Пробник простой – Пробник электромонтера и автоэлектрика » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

СХЕМЫ ПРОСТЫХ ПРОБНИКОВ

   Такие полезные радиолюбительские пробники удобны тем, что имеют простую конструкцию, содержат минимум элементов и при этом универсальны – можно быстро проверить работоспособность практически любых широко применяемых транзисторов (кроме полевых) и звуковых или ВЧ-каскадов.

Транзисторные пробники

   Ниже приведены две схемы транзисторных пробников. Они представляют собой простейшие автогенераторы, где в качестве активного элемента используется проверяемый транзистор. Особенностью обеих схем является то, что с их помощью можно проверять транзисторы не выпаивая их из схемы. Также можно таким пробником определить цоколевку выводов и структуру (p-n-p, n-p-n ) неизвестных вам транзисторов опытным путем, просто попеременно подключая его щупы к разным выводам транзистора. При исправном транзисторе и правильном его подключении раздастся звуковой сигнал. Никакой, даже маломощный транзистор вы при этом не повредите (при неправильном его включении), так как токи при проверке очень малы и ограничены другими элементами схемы. Первая схема с трансформатором: 

можно проверять транзисторы не выпаивая их из схемы

   Аналогичный трансформатор можно взять из любого старого карманного транзисторного приемника, например «Нева», «Селга», «Сокол» и аналогичного (это – переходной трансформатор между каскадами приемника, а не тот, который стоит на выходе у динамика!). При этом вторичную обмотку трансформатора (она со средним выводом) надо уменьшить до 150 – 200 витков. Конденсатор может быть емкостью от 0,01 до 0,1 мкФ, при этом изменится только тональность звука при проверке. При исправном проверяемом транзисторе в телефонном капсюле, подключенном ко второй обмотке трансформатора, раздастся звук. 

   Второй пробник бестрансформаторный, хотя принцип работы аналогичен предыдущей схеме:

СХЕМЫ ПРОСТЫХ ПРОБНИКОВ

   Пробник собирается в подходящем корпусе небольших размеров. Деталей немного и схему можно спаять навесным монтажом, прямо на контактах переключателя. Батарея типа «Крона». Переключатели – с двумя группами контактов на переключение, например типа «П2-К». Щупы «Эмиттер», «База» и «Коллектор» — провода разных цветов (лучше сделать так, чтобы буква цвета провода соответствовала выводу транзистора. Например: :коллектор – красный или коричневый, база — белый, эмиттер – любой другой цвет). Так удобнее будет пользоваться. На концы проводов нужно припаять наконечники, например из проволоки или тонких длинных гвоздей. Припаять провод к гвоздю можно на таблетке простого аспирина (ацетилсалициловая кислота). В качестве звукового излучателя следует взять высокоомный телефонный капсюль (типа «ДЭМШ» или, например, из телефонной трубки старых типов аппаратов), потому что громкость звука у них достаточно высокая. Или же использовать высокоомные наушники.

Пробник собирается в подходящем корпусе

   Пробник транзисторов, собранный по этой схеме, я лично использую уже много лет и он реально работает без всяких нареканий. Можно проверять любые транзисторы – от микромощных, до большой мощности. Только вот оставлять пробник с включенной батареей надолго не следует, потому что батарейка быстро сядет. Поскольку схема собиралась мной много лет назад, то использовались германиевые транзисторы типа МП-25А (или любые из серии МП-39, -40, -41, -42).

Можно проверять любые транзисторы – от микромощных, до большой мощности

   Вполне возможно, что подойдут и современные кремниевые транзисторы, но лично мною такой вариант на практике не проверялся. То есть схема будет, конечно, работоспособна как генератор, но как будет себя вести при проверки транзисторов без выпайки их из схемы, я сказать затрудняюсь. Потому что ток открывания германиевых элементов меньше, чем у кремниевых (типа КТ-361, КТ-3107 и др.).

Пробник звуковых и ВЧ-каскадов

   Для этих целей можно сделать очень простой пробник-мультивибратор на двух транзисторах. 

пробник-мультивибратор

   Таким пробником можно быстро найти неисправный каскад или активный элемент (транзистор или микросхему) в неработающей схеме. При проверке звуковых каскадов (усилителей, приемников и т.д.) его щуп Х2 нужно подключить к общему проводу (GND) проверяемой схемы, а щупом Х1 касаться поочередно выходных и входных точек каждого каскада, начиная от выхода всего устройства. Сигнализатором исправности/неисправности в данном случае является динамик (или наушники) проверяемого устройства. Например, сначала подаем сигнал на вход оконечного каскада (питание проверяемого устройства должно быть включено!) и, если звук в динамике есть, значит выходной каскад исправен. Затем касаемся щупом входа предоконечного каскада и т.д., двигаясь в сторону входных каскадов устройства. Если на каком-то из каскадов звука в динамике не будет, то здесь и следует искать неисправность.

   Из-за простоты схемы этот пробник-генератор помимо основной частоты (около 1000 Гц) выдает и многочисленные гармоники, кратные основной частоте (10, 100, … к Гц). Поэтому его можно использовать и для высокочастотных каскадов, например, приемников. Причем щуп Х2 в этом случае не обязательно даже подключать к общему проводу проверяемого устройства, сигнал будет поступать на проверяемые каскады за счет емкостной связи. При проверке работоспособности приемника с магнитной антенной достаточно приблизить к антенне щуп Х1. Конструктивно этот пробник может быть сделан на плате из фольгированного текстолита и выглядеть так: 

пробник-мультивибратор

Пробник звуковых и ВЧ-каскадов

   В качестве вкл./выкл. питания можно использовать микропереключатель (микрик, кнопку) без фиксации. Тогда питание на мультивибратор будет подаваться при нажатии на эту кнопку. Автор статьи: Барышев А.

Индикатор напряжения на светодиодах своими руками

Индикатор напряжения своими руками

Проверка напряжения в цепи – процедура, необходимая при выполнении различного рода работ, связанных с электричеством. Некоторые любители-электрики, а иногда и профессионалы пользуются для этого самодельной «контролькой» – патроном с лампочкой, к которому подсоединены провода. Хотя такой метод запрещен «Правилами безопасной эксплуатации электроустановок потребителей», он достаточно эффективен при грамотном использовании. Но все же в этих целях лучше пользоваться светодиодными определителями – пробниками. Их можно купить в магазине, а можно изготовить самостоятельно. В этой статье мы расскажем, для чего нужны эти приборы, по какому принципу они работают и как изготовить индикатор напряжения на светодиодах своими руками.

Для чего нужен логический пробник?

Это устройство с успехом применяется, когда необходимо произвести предварительную проверку работоспособности элементов простой электрической схемы, а также для первичной диагностики несложных приборов – то есть в тех случаях, когда не требуется высокая точность измерений. С помощью логического пробника можно:

  • Определить наличие в электроцепи напряжения величиной 12 – 400 В.
  • Определить полюса в цепи постоянного тока.

Прозвонка самодельным пробником

  • Произвести проверку состояния транзисторов, диодов и других электрических элементов.
  • Определить фазную жилу в электроцепи переменного тока.
  • Прозвонить электрическую цепь для проверки ее целостности.

Наиболее простыми и надежными приборами, с помощью которых производятся перечисленные манипуляции, являются индикаторная отвертка и звуковая отвертка.

Пробник электрика: принцип работы и изготовление

Простой определитель на двух светодиодах и с неоновой лампочкой, получивший среди электриков название «аркашка», несмотря на несложное устройство, позволяет эффективно определять наличие фазы, сопротивления в электроцепи, а также обнаруживать в схеме КЗ (короткое замыкание). Универсальный пробник для электрика в основном используется для:

  • Диагностики на обрыв катушек и реле.
  • Прозвонки моторов и дросселей.
  • Проверки выпрямительных диодов.
  • Определения выводов на трансформаторах с несколькими обмотками.

Это далеко не полный перечень задач, которые решают с помощью пробника. Но и перечисленного достаточно, чтобы понять, насколько полезно это устройство в работе электромонтера.

Замеры самодельным тестером

В качестве источника питания для этого устройства используется обычная батарейка с показателем напряжения 9 В. Когда щупы тестера замкнуты, величина потребляемого тока не превышает 110 мА. Если же щупы разомкнуты, то устройство не потребляет электроэнергию, поэтому ему не нужен ни переключатель режима диагностики, ни выключатель энергопитания.

Пробник способен выполнять свои функции в полной мере, пока напряжение на источнике питания не падает ниже 4 В. После этого его можно использовать в качестве указателя напряжения в цепях.

Во время прозвонки электрических цепей, показатель сопротивления которых составляет 0 – 150 Ом, загорается два светоизлучающих диода – желтого и красного цвета. Если показатель сопротивления составляет 151 Ом – 50 кОм, то светится только желтый диод. Когда на щупы прибора подается напряжение сети величиной от 220 В до 380 В, начинает светиться неоновая лампа, одновременно с этим наблюдается легкое мерцание LED-элементов.

Схема этого индикатора напряжения имеется в интернете, а также в специализированной литературе. Изготавливая такой пробник своими руками, его элементы устанавливают внутри корпуса, который изготовлен из изоляционного материала.

Из чего можно сделать корпус щупов

Зачастую для этих целей используется корпус от ЗУ любого мобильного телефона или планшетного компьютера. С передней части корпуса следует вывести штырь-щуп, с торцевой – качественно изолированный кабель, конец которого снабжен щупом или зажимом-«крокодильчиком».

Сборка простейшего пробника напряжения со светодиодным индикатором – на следующем видео:

Как изготовить эвуковой пробник электрика своими руками?

У некоторых запасливых любителей в «арсенале» можно найти множество полезных вещей, в том числе и наушник (капсюль) для телефона ТК-67-НТ.

Подойдет и другое аналогичное устройство, снабженное металлической мембраной, внутри которого расположена пара последовательно соединенных катушек.

На базе такой детали может быть собран несложный звуковой пробник.

В первую очередь нужно разобрать телефонный капсюль и отсоединить катушки друг от друга. Это нужно для того, чтобы освободить их выводы. Элементы размещаются в наушнике под звуковой мембраной, около катушек. После сборки электрической цепи мы получим вполне рабочий определитель со звуковой индикацией, который возможно применять, к примеру, в целях проверки дорожек печатных схем на взаимное перемыкание.

Схема пробника со звуковой и световой индикацией

База такого пробника – электрогенератор с индуктивной противоположной взаимосвязью, основными деталями которого является телефон и транзистор малой мощности (лучше всего германиевый). Если такого транзистора у вас нет, то можно воспользоваться другим, обладающим проводимостью N-P-N, однако в этом случае полярность включения источника электропитания следует поменять. Если включить генератор не получается, выводы одной (любой) катушки нужно поменять между собой местами.

Увеличить громкость звука можно, выбрав частоту электрогенератора таким образом, чтобы она была максимально приближена к резонансной частоте наушника. Для этого мембрану и сердечник нужно расположить на соответствующем расстоянии, изменяя интервал между ними до получения нужного результата. Теперь вы знаете, как сделать индикатор напряжения на базе телефонного наушника.

Наглядно изготовление и использование простейшего пробника напряжения на видео:

Заключение

В этом материале мы рассказали, как индикатор напряжения на светодиодах можно собрать своими руками, а также рассмотрели вопрос изготовления простого диагностического прибора на базе звукового наушника.

Использование самодельного пробника напряжения

Как видите, самостоятельно собрать светодиодный индикатор, как и звуковой определитель, достаточно несложно – для этого достаточно иметь под рукой паяльник и нужные детали, а также обладать минимальными электротехническими знаниями. Если же вы не очень любите самостоятельно собирать электрические устройства, то при выборе прибора для несложной диагностики стоит остановиться на обычной индикаторной отвертке, которая продается в магазинах.

Пробник для USB

Здравствуйте, уважаемые Авторы, Журналисты,Читатели!

В этой статье я расскажу, как изготовил простой пробник для USB устройств. Пробник помогает быстро проверить исправность зарядных устройств, портов компьютеров, шнуров-удлинителей USB. Выполнен в виде флешки, его удобно носить с собой.


Многие современные электронные устройства имеют функцию получения питания по USB для работы и зарядки.

Часто бывают ситуации, когда устройство перестаёт работать или заряжаться. И непонятно, вышло из строя само устройство или источник, подающий питание. Или неисправен шнур-удлинитель USB.

Можно, конечно, попробовать подключить к источнику другое USB устройство, например, флешку. Но, во-первых, не каждая флешка включает свой индикатор просто от подключения, во-вторых, неразумно использовать носитель информации, порой важной информации, для таких целей.

Мне, по роду моих занятий, часто приходится ремонтировать и проверять различные устройства с USB. Это компьютеры, зарядные устройства и прочее. Чтобы облегчить свой труд, я сделал пробник для USB.

Изготовить пробник USB не составит большого труда. Достаточно элементарных знаний, навыков и минимума материалов и инструментов. Но, сначала, я расскажу о принципе работы пробника. Он очень прост.

Это его схема.


Описание работы пробника.

При подключении пробника к проверяемому устройству, назовём его устройство-донор, так как будем проверять подачу напряжения +5 Вольт от него, через разъём USB поступают плюс 5 Вольт и земля (GND).

Через ограничительный резистор и светодиод протекает ток, вызывая свечение светодиода.

Контакты данных разъёма ( DATA+ и DATA- ) не задействованы, не подключены, поэтому не могут нарушить работу устройства-донора, вызвать сбой в его работе. Это очень важно, когда проверяем USB порт стационарного компьютера или ноутбука.

Ток, потребляемый светодиодом, во много раз меньше тока, допустимого для стандартного USB выхода. Поэтому не может нарушить работу устройства-донора.

В то же время, он создаёт некоторую нагрузку, имитируя реальное подключаемое устройство, это нужно в некоторых случаях.

По яркости свечения светодиода можно судить о величине напряжения +5 В. Разумеется, о наличии / отсутствии этого напряжения.

Можно наблюдать как устройство-донор подаёт или снимает питание со своего выхода.

Ну и, наконец, можно использовать пробник как фонарик.

Теперь расскажу о сборке пробника.

Детали и материалы:

Разъём USB
Резистор 330 Ом 0,25 Вт
Светодиод
Пенал
Припой
Канифоль
Лак
Изолента


Инструменты:

Паяльник 25-40 Вт
Кусачки
Нож канцелярский
Перманентный фломастер, по-другому CD/DVD/BD-PEN
Небольшие пассатижи
Пинцет
Ножовка по металлу
Небольшой напильник
Мультиметр (желательно)


Процесс сборки пробника.

Шаг 1.

Я нашёл в своих запасах кабель от не подлежащей восстановлению и выброшенной компьютерной мыши. Отрезал от него USB разъём с небольшим отрезком кабеля.

Шаг 2.

Подготовил детали. Это вышеупомянутый разъём, резистор МЛТ-0,25 330 Ом и яркий голубого свечения светодиод. Светодиод я выпаял из съёмной передней панели не подлежащей восстановлению автомагнитолы.

Шаг 3.

Подготовил провода разъёма к сборке всей схемы. Снял внешнюю изоляцию, красный (+5 В) и чёрный (земля) провода зачистил и залудил. А зелёный и белый (данные) укоротил, они ни к чему подключаться не будут.

Шаг 4.

Поскольку я выпаял светодиод из платы, я не знал, где у него анод (+), а где катод (-). Поэтому, я определил это при помощи мультиметра. Для этого я включил мультиметр на прозвонку полупроводников. Подсоединял щупы прибора к светодиоду, меняя их местами. Я заметил, в каком положении светодиод засветился. Тот вывод светодиода, к которому был подключен плюсовой провод мультиметра, я пометил перманентным фломастером. Это анод светодиода.

Шаг 5.

Спаял схему.




Шаг 6.

Приступил к предварительной проверке работоспособности схемы. Для этого подключил пробник к заряднику USB.


Шаг 7.

Вставил зарядник в один из блоков розеток на моём рабочем столе. Светодиод ярко загорелся. Отлично! Всё работает, как задумано.


Шаг 8.

Отключил зарядник от сети. Но светодиод продолжал светиться некоторое время.


А с другим зарядником светодиод погас моментально после отключения от сети. Это говорит о том, что изготовители сэкономили на конденсаторах. Фотографировать я не счёл нужным.

Таким образом, данный пробник может выявить и этот нюанс.

Шаг 9.

Пришло время заняться корпусом пробника. Прикинув нужные габариты, я решил использовать маленький прозрачный пенал, в котором я раньше хранил мелкие свёрла.

Выводы светодиода я изогнул под 90 градусов и расположил светодиод таким образом, чтобы он светил в ту же сторону, куда "смотрит" символ USB на разъёме "трезубец", то есть, на того, кто включает пробник в гнездо.


Шаг 10.

Я отметил перманентным фломастером, где надо отрезать лишнее у пенала. Ножовкой по металлу отпилил лишнее, обработал кромки напильником. Также напильником я расширил внутренний диаметр пенала в передней части, чтобы он плотно надевался на заднюю часть разъёма.

Выяснилось, что вся схема не помещается внутри укороченного пенала, мешают провода. Пришлось частично схему перепаять, укоротив провода.


Проверил, насколько хорошо, плотно, пенал надевается на заднюю часть разъёма. Всё нормально.

Шаг 11.

Окончательная сборка. Для фиксации схемы внутри корпуса взял лак. По-хорошему, надо было взять прозрачный лак, но его под рукой не оказалось. Использовал, какой был. На результатах работы это особо не сказалось. Покрыл лаком детали схемы и пенал изнутри и надел пенал на заднюю часть разъёма.



Шаг 12.

Решил в целях дизайна решил скрыть схему устройства и обмотал часть корпуса чёрной изолентой. Должен признать, получилось не очень красиво. Но переделывать не стал, опасаясь испортить готовое изделие.


Шаг 13.

Окончательная проверка пробника. Как и в случае предварительной проверки, подключил пробник к заряднику и вставил зарядник в розетку. Светодиод засветился. Всё работает! Можно пользоваться пробником!


Проверка USB ноутбука.

Проверка USB шнура-удлинителя.

Этот пробник я изготовил около месяца назад и за прошедший период пользовался им уже более десятка раз. Пробник помог мне сэкономить время на ремонт и проверку различных устройств с USB.

Надеюсь, эта самоделка и статья будут вам полезны.

Буду рад вашим комментариям и пожеланиям.

С уважением, R555.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

vip-cxema.org - Простой пробник - прозвонка своими руками

2757426890.jpg

Начало.

Часто бывает необходимо в куче проводов найти куда какой идет, узнать целостность цепи, проверить, если ли короткое замыкания или же обрыв, также часто нужно узнать целостность p-n перехода диодов, транзисторов и прочих полупроводником, в этом нам поможет такой инструмент как прозвонка. Она будет несомненно полезна как электрику, так и электронику. Дело в том, что пользоваться режимом прозвонки в мультиметре не всегда бывает удобно, а в некоторых из них вообще отсутствует эта функция, так что такая простая прозвоночка решит эту проблему.

1862675823.jpg

Прозвонка очень практичная, ее тон звучания зависит от сопротивления проверяемого участка цепи. Чем больше сопротивление - тем реже щелчки, соответственно при маленьком сопротивлении щелчков будет очень много и они будут слышаться как писк, тональность которого можно настроить номиналами: То бишь на уже готовой плате с впаянными компонентами можно легко найти короткое замыкание, а p-n переходы мы будем слышать не как КЗ, тональность будет отличаться. А если немного приловчиться, то по звуку с легкость возможно сказать где у транзистора эмиттер, а где коллектор (у второго щелчков больше).

Корпус.

Корпус - тоже очень важен, от него будет зависеть насколько приятно будет пользоваться прибором, все-таки эстетика важна. Кроме этого он будет защищать платку и элемент питания от суровых условий повседневной жизни человека работающего с электричеством.

Мною был взят корпус от АТБшного маркера, в него идеально входит один элемент АА и ещё остается место для платы, да и выглядит он хорошо для этих целей.

В качестве щупов кучок медного провода в эмали и цилиндрической кусочек медь, а именно старое жало паяльника, этот цветной металл имеет малое сопротивление и более-менее хорошо переносит O2, особенно с припоем:) На самой плате жало закрепляется расплавленным оловом на определенном участке меди.

3748268977.jpg

На картинке вы можете увидеть, как устроена прозвонка изнутри, сначала идет щуп, который отходит от платы, далее сама плата прозвонки, потом батарейка/аккумулятор, который плотно закрепляется "затычкой".

Также тут присутствует динамик - это элемент индикации, для громкого воспроизведения звука много дырочек, через которые он колышет воздух. (он не нарисованы!)

Компоненты и замены.

Значения параметров всех применяемых в этой схеме деталей не критично и может варьироваться, например нету резистора 51к, а есть 47к - то смело ставьте его. Все транзисторы - любые, главное чтобы структура совпадала (3 - НПН, 1 - ПНП).

Маркировка: BC8471G, BC8573F Nсбоку).

Уведомители.

1520097109.jpg

Динамик конечно же берется миниатюрный - такой как в наушниках. Сопротивление его обычно16 Ом, а громкость вполне достаточная. У меня был в наличии громкоговоритель (speaker) из старой Нокии 6303Ай, весьма хороший телефон нужно отметить. Его я приклеил на обратную сторону платы термоклеем, она выступала в роли резонатора.

2816909855.jpg

Если вы работаете в таком месте где очень шумно, то следует параллельно звукоизлучателю поставить светодиод, который и будет служить световой индикацией.

Питание.

Питание прозвонки - пальчиковая батарейка 1,5 Вольта, если увеличить это значение, то появиться возможность проверять и светодиоды, к тому же громкость звука значительно возрастет. Но в таком случае высокое напряжение может повредить некоторые чувствительные радиодетали.

Добавляем чувствительности.

2592508847.jpg

Хотите супер-мега чувствительность? Тогда отключите электролитический конденсатор С1. Теперь если просто дотронемся до щупов прибора, то он уже начнет бурно на это реагировать. Не знаю зачем, но если хотите такой бешеный режим то поставьте микро-кнопку на один из выводов конденсатора.

3710316927.jpg

А лучше вот вам вообще эта же, но немного измененная схема, таким образом у нас получится два режима: очень маленькая чувствительность и супер-чувствительность до 120 Мом. Между ними можно легко переключаться с помощью кнопок S1 и S2.

Фото.

394953921.jpg

339138580.jpg

(почти готовая плата, но без динамика и щупов)

1340329464.jpg

(готовая плата с щупом и пружиной, вид сбоку)

1601595054.jpg

(полностью готовая и рабочая прозвонка)

Плата и другие файлы.

Тут можете скачать архив

Видео демонстрация работы.

Вывод.

Схема прозвонки в общем-то несложна, но весьма полезна. Она незаменимая и очень нужная вещь для любого человека, работающего с электричеством. Корпус выбираете сами, тут ваша фантазия безгранична - от полипропиленовых труб до мини-мыльницы, мой выбор меня очень даже устроил. Звук вышел громкий и главное информативный. Также нужно заметить, что пока щупы не замкнуты - потребление тока равно нулю, а это очень экономично.

Конец.

Автор: Егор

Пробники для проверки схем | Кое-что из радиотехники

  Данные устройства предназначены для проверки (прозвонки) монтажа собранных конструкций, проверки правильности соединений и соответствии принципиальной схемы. Несомненным удобством пробников является наличие сигнализации, которая позволяет контролировать целостность той или иной цепи.
  Одна из возможных схем пробника приведена на Рис.1. В нём три маломощных транзистора, два резистора, светодиод и источник питания.


  В исходном состоянии все транзисторы закрыты, поскольку на их базах относительно эмиттера нет напряжения смещения. Если же соединить между собой выводы «К зажиму» и «К электроду», в цепи базы транзистора VT1 потечёт ток, значение которого зависит от сопротивления резистора R1. Транзистор откроется, и на его коллекторной нагрузке – резисторе R2 появится падение напряжения. В результате откроются транзисторы VT2 и VT3 и через светодиод VD1 потечёт ток. Светодиод вспыхнет, что и послужит сигналом исправности проверяемой цепи.

  Пробник можно собрать в любом варианте. Как один из них в виде небольшого пластмассового корпуса, который можно прикрепить к ремешку от наручных часов. Снизу к ремешку (напротив корпуса прикрепляют металлическую пластину – электрод, соединённую с резистором R1. Когда ремешок застёгнут на руке, электрод прижат к ней. В этом случае пальцы выполняют роль щупа пробника. При использовании браслета никакой дополнительной пластины – электрода не понадобится – вывод резистора R1 соединяют с браслетом.
  Зажим пробника подсоединяют, например, к одному из концов проводника, который нужно отыскать в жгуте или «прозвонить» в монтаже. Касаясь пальцами поочерёдно концов проводников с другой стороны жгута, нужный проводник находят по появлению свечения светодиода. В данном случае между щупом и зажимом оказывается включённым не только сопротивление проводника, но сопротивление части руки Тем не менее проходящего через эту цепь тока достаточно, чтобы пробник «сработал» и светодиод вспыхнул.
  Транзистор VT1 может быть любой из серии КТ315 со статическим коэффициентом передачи тока не менее 50, VT2 и VT3 – любые маломощные низкочастотные, соответствующей структуры и с коэффициентом передачи тока не менее 60 (VT2) и 20 (VT3).
  Светодиод АЛ102 экономичен ( потребляет ток не более 5 мА ), обладает небольшой яркостью свечения. Если она будет недостаточна для ваших целей можно установить светодиод АЛ102Б. В этом случае ток потребления возрастёт в несколько раз ( конечно в момент индикации ).
  Источник питания – два аккумулятора Д-0,06 или Д 0,07, соединённые последовательно. Выключателя питания в пробнике нет, поскольку в исходном состоянии ( при разомкнутой базовой цепи первого транзистора ) транзисторы закрыты, и ток потребления ничтожен – он соизмерим с током саморазряда источника питания.
  Пробник можно собрать и на транзисторах одинаковой структуры, например по приведённой на Рис.2 схеме. Правда, он содержит несколько больше деталей, чем предыдущая конструкция, но зато его входная часть оказывается защищенной от электромагнитных цепей, приводящих иногда к ложному вспыхиванию светодиода.
  В этом пробнике работают кремниевые транзисторы серии КТ315, характеризующиеся малым током коллекторного перехода в широком диапазоне температур. При использовании транзисторов с коэффициентом передачи тока 25 … 30 входное сопротивление пробника составит 10 … 25 Мом. Повышение входного сопротивления нецелесообразно из-за вероятности ложного индицирования внешними наводками и посторонними проводимостями.
Как и в предыдущем случае, в исходном состоянии устройство практически не потребляет энергии. Потребляемый ток в режиме индикации не превышает 6 мА.
  Корректировать входное сопротивление прибора можно подбором резистора R3, предварительно подключив ко входу цепочку резисторов общим сопротивлением 10 … 25 Мом и добиваясь минимальной яркости светодиода.
В случае отсутствия светодиода вместо него можно использовать в обоих вариантах малогабаритную лампу накаливания на напряжение 2.5 В и потребляемый ток 0,068 А (например, лампу МН 2,5-0,068). Правда, в этом случае придётся уменьшить сопротивление резистора R1 примерно до 10 кОм и подобрать его точнее по яркости свечения лампы при замкнутых входных проводниках.

  В схемах пробников также можно использовать и звуковую индикацию. Схема одного из них, прикреплённого к руке с помощью браслета, приведена на Рис.3. Он состоит из чувствительного электронного ключа на транзисторах VT1, VT4 и генератора звуковой частоты (ЗЧ), собранного на транзисторах VT2, VT3 и миниатюрном телефоне BF1. Частота колебаний генератора равна частоте механического резонанса телефона. Конденсатор С1 снижает влияние наводок переменного тока на работу индикатора. Резистор R2 ограничивает ток коллектора транзистора VT1, а значит, и ток змиттерного перехода транзистора VT4. Резистором R4 устанавливают наибольшую громкость звучания телефона, резистор R5 влияет на надёжность работы генератора при изменении питающего напряжения.
  Звуковым излучателем BF1 может быть любой миниатюрный телефон сопротивлением от 16 до 150 ом. Источник питания – аккумулятор Д-0,06 или подобный. Транзисторы – любые кремниевые соответствующей структуры, с коэффициентом передачи тока не менее 100 и обратным током коллектора не более 1 мкА.
   Конструкция монтируется на изоляционной планке или плате из одностороннего фольгированного стеклотекстолита. Планку (или плату) помещают, например, в металлический корпус в виде наручных часов, с которым соединён металлический браслет. Напротив излучателя в крышке корпуса вырезают отверстие, на боковой стенке укрепляют миниатюрное гнездо разъема ХТ1, в которое вставляют удлинительный проводник с щупом ХР1 ( им может быть зажим “крокодил” ) на конце.
Несколько иная схема пробника приведена на Рис.4. В ней используются как кремниевые, так и германиевые транзисторы. Конденсатор С2 шунтирует по переменному току электронный ключ, а конденсатор С3 – источник питания. Транзистор VT1 желательно подобрать с коэффициентом передачи тока не менее 120 и обратным током коллектора менее 5 мкА, VT2 – с коэффициентом передачи не менее 50, VT3 и VT4 – не менее 20 ( и обратным током коллектора не более 10 мкА ). Звуковой излучатель BF1 – капсюль ДЭМ-4 ( или подобный ) сопротивлением 60 … 130 Ом.
  Пробники со звуковой индикацией потребляют несколько больший ток по сравнению с предыдущими, поэтому при больших перерывах в работе желательно отключать источник питания.

  На Рис.5 изображена схема пробника – омметра. Он бывает необходим если при “прозвонки” также желательно измерить примерное сопротивление цепи. Диапазон измеряемых им сопротивлений – от единиц ом до 25МОм.
Схему омметра составляет пробник приведённый на Рис.2. Только в омметре параллельно резистору R3 подключают ( в зависимости от диапазона измерений ) один из резисторов R5 – R7.
  Пока щупы ХР1 и ХР2 разомкнуты ( ничто не подключено ), транзисторы закрыты и пробник не потребляет ток от источника GB1. Но стоит подключить щупы, например к кому-нибудь резистору, как в цепи базы составного транзистора VT1VT2 потечёт ток. Сопротивление участка коллектор – эмиттер транзистора VT2 уменьшится и в его цепи также потечёт ток, который создаст на эмиттерном переходе транзистора VT3 падение напряжения. Оно будет тем больше, чем меньше сопротивление проверяемого резистора и чем больше сопротивление нижнего плеча резистора делителя (резистора R3 и одного из резисторов R5 – R7). В показанном на схеме положении кнопочных выключателей SB1 – SB3 этого напряжения будет достаточно для открывания транзистора VT3 и зажигания светодиода при сопротивлении проверяемого резистора (или цепи) менее 25 МОм. Если же нажать кнопку выключателя SB1, светодиод зажжётся только при сопротивлении до 1 МОм. При нажатии остальных кнопок светодиод будет реагировать лишь на сопротивление, не превышающее обозначенного у кнопки предела.
  Транзисторы могут быть серий КТ306, КТ312, КТ315 с любым буквенным индексом, но возможно большим коэффициентом передачи и меньшим обратным током коллектора. Светодиод – АЛ102А, АЛ102Г, АЛ307А. Резисторы МЛТ-0,125 или МЛТ-0,25. Остальные детали – любого типа.
   Налаживание пробника сводится к установки выбранных пределов измерения. Сначала подбирают щупы пробника к цепочке последовательно соединённых резисторов общим сопротивлением 25 МОм и подбором резистора R3 добиваются минимальной яркости свечения светодиода. Затем щупы подключают к резистору сопротивлением 1 МОм и тех же результатов добиваются подбором резистора R5 при нажатой кнопке выключателя SB1. Аналогично поступают на оставшихся пределах измерения. Следует заметить, что светодиод вспыхивает тем ярче, чем больше коэффициент передачи тока транзистора VT3.
  Максимальный ток, потребляемый пробником в режиме измерения, не превышает 10 мА.

 ИСТОЧНИК: Б. С. Иванов “В ПОМОЩЬ РАДИОКРУЖКУ”, Москва, “Радио и связь”, 1990г, стр.4 – 7.

Похожее

Простые логические пробники | Кое-что из радиотехники

   Для проверки схем, в которых используются цифровые интегральные микросхемы, необходимы устройства, определяющие напряжения высокого и низкого уровней ( соответственно логические 1 или 0 ). Для их индикации используют разнообразные логические пробники, т. е. пробники, реагирующие лишь на уровни напряжений логических сигналов.


   На Рис.1 изображена схема самого простого логического пробника. В нём всего лишь один транзистор и светодиод, включённый в коллекторную цепь транзистора.
   Если на щупы ХР2 и ХР3 подано напряжение питание, но щуп ХР1 никуда не подключен, светодиод горит “вполнакала”. Такой режим обеспечивается подбором резистора R2, задающим напряжение смещения на базе транзистора. Когда же щуп ХР1 будет касаться вывода микросхемы, на которой логический 0, транзистор закроется и светодиод погаснет. И, наоборот, при подключении этого щупа к цепи с логической 1 транзистор откроется настолько, что светодиод вспыхнет ярким светом.
   Данные режимы справедливы, если прибор питается от измеряемой схемы. Если пробник имеет автономное питание, например батарея 3336, щуп ХР3 дополнительно соединяют с общим проводом конструкции.
   Пробник можно использовать и для “прозвонки” монтажа; тогда его питают от батареи, а щупом ХР1 и проводником, соединяющим с щупом ХР3, касаются нужных участков проверяемых цепей. Если между ними есть соединение, светодиод гаснет.
   В пробнике можно использовать любой маломощный кремниевый транзистор со статическим коэффициентом передачи тока не менее 100. Вместо АЛ102Б подойдёт любой светодиод серий АЛ102, АЛ307. Резистор R2 подбирают таким сопротивлением, чтобы светодиод горел “вполнакала”.


   Другая конструкция простого пробника ( Рис.2 ) содержит два светодиода. Пробник позволяет не только контролировать логические уровни в разных цепях устройства, но и проверять наличие импульсов, а также приблизительно оценивать их скваженность ( отношение периода следования импульсов к их длительности ). Кроме того, он позволяет фиксировать и “третье состояние”, когда логический сигнал находится между 0 и 1. В этих целях в пробнике в пробнике установлены диоды разного свечения: зелёного (HL1) и красного (HL2).
   На транзисторе VT1 выполнен усилитель, повышающий входное сопротивление пробника. Далее следуют электронные ключи на транзисторах VT2 и VT3, управляющие диодами соответствующим свечением..
   Если напряжение на щупе ХР1 относительно общего провода ( минус источника питания ) более 0,4 В, но менее 2,4 В (“третье состояние”), транзистор VT2 открыт, светодиод HL1 не горит. В то же время транзистор VT3 закрыт, поскольку падение напряжения на резисторе R3 недостаточно для полного открывания диода VD1 и создания нужного смещения на базе транзистора. Поэтому светодиод HL2 также не светится.
   Как только напряжение на входном щупе пробника станет менее 0,4 В транзистор VT2 закроется и загорится светодиод HL1, индицируя логический 0. При напряжении на щупе ХР1 более 2,4 В открывается транзистор VT2, загорается светодиод HL2 – он индицирует логическую 1.
   В случае поступления на вход пробника импульсного напряжения скваженность импульсов приблизительно оценивают по яркости свечения того или другого светодиода.
   Кроме указанных на схеме транзисторов можно применить транзисторы серий КТ312, КТ201 (VT1, VT3), КТ203 (VT2), любой кремниевый диод (VD1), светодиоды серий АЛ102, АД307, АЛ314 соответственного свечения.
   Налаживая пробник, подбором резистора R1 добиваются отсутствия свечения светодиодов в исходном состоянии – при отключённом щупе ХР1. Подав же на этот щуп напряжение 2,4 В ( относительно щупа ХР3 ), подбором резистора R6 добиваются зажигания свечения светодиода HL2. Яркость свечения, а значит предельно допустимый ток через светодиод, ограничивают резисторами R4 и R7.

ИСТОЧНИК: Б. С. Иванов “В ПОМОЩЬ РАДИОКРУЖКУ”, Москва, “Радио и связь”, 1990г, стр.13 – 14.

Похожее

СХЕМА ЛОГИЧЕСКОГО ПРОБНИКА

   Всем привет. Сегодня хочу представить вам логический пробник, которым пользуюсь уже пару лет. Не всегда радиолюбитель может позволить приобрести себе необходимые приборы, предназначенные для диагностики и настройки радиоэлектронных устройств. Вот и приходится придумывать разнообразные приставки к уже имеющимся в домашней радиолаборатории измерительным приборам, или паять собственные приборы, позволяющие проводить измерения или только регистрацию уровней необходимой величины.

Принципиальная схема логического пробника

Принципиальная схема логического пробника

Печатная плата логического пробника

Печатная плата логического пробника

   Часто использование пробников даже более оправдано, чем измерительных приборов, поскольку бывает достаточно проконтролировать лишь наличие сигнала, а его точное значение и параметры необязательно. Получается, что в подобных ситуациях точная измерительная техника только зря отнимает внимание и время.

СХЕМА собранного самодельного ЛОГИЧЕСКОГО ПРОБНИКА

   Пробник может использоваться для настройки или наладки цифровых радиоэлектронных устройств, и проверки, есть ли сигнал на входе и выходе того или иного прибора (например для различных мигалок, мультивибраторов, сирен). Он имеет небольшие габариты, у меня тестер поместился в коробочке из-под тик-так.

 ЛОГИЧЕСКИЙ ПРОБНИК

   Логический пробник позволяет отображать состояние логического нуля и логической единицы, наличие импульса и превышение допустимого уровня логического сигнала. Информация выдается на 2 светодиода зеленого ( 1 ) и красного ( 0 ) цвета. Пробник может требовать небольших настроек резистором R5. Я использовал микросхему К561ЛА7, у кого таких нет, то рядом со схемой написаны аналоги микросхем, которые можно использовать. Но именно ЛА7, по моему мнению, лучше всего использовать. Пробник работает от 3 до 15 вольт.

Щуп для ЛОГИЧЕСКОГО ПРОБНИКА

   Пользоваться им довольно легко. Нужно подключиться крокодильчиками к плюсу и минусу платы, которую нам нужно диагностировать. Затем щупом касаться до контрольных точек и смотреть, есть ли сигнал на выходе микросхем. Светодиоды на пробнике должны переключаться между собой с той частотой, которую выдает генератор импульсов.

Как своими руками спаять ЛОГИЧЕСКИЙ ПРОБНИК

   Если импульсов нет, то на вход микросхемы не подается сигнал или микросхема вышла из строя. Если кто не знает что такое контрольные точки - это те точки, из которых выходит сигнал из микросхемы, они обозначаются кружочком.

Пример схемы испытываемого устройства

Пример измерения логического пробника

   Вот на примере рассмотрим схему: точки обведены красным цветом - это выход сигнала с генератора. К ним нужно подключаться щупом, и тогда светодиоды на пробнике будут переключаться - значит генератор импульсов работает. И микросхема в этом случае так же работает. Спасибо за внимание, автор материала Игорь М.

   Форум по микросхемам

   Обсудить статью СХЕМА ЛОГИЧЕСКОГО ПРОБНИКА


Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *