Поделки arduino – Наткнулся на проекты Arduino и они мне безумно понравились, на нем можно создать что душа пожелает?

Содержание

10 интересных вещей, которые можно сделать на Arduino

Если у вас есть тяга к тех­но­ло­ги­ям (или ребё­нок с такой тягой), рас­смот­ри­те Arduino. Эта шту­ка оза­да­чит вас и ребён­ка на мно­го часов, а на выхо­де полу­чат­ся уди­ви­тель­ные про­ек­ты.

Что за Arduino

Arduino — это про­грам­ми­ру­е­мый мик­ро­кон­трол­лер. То есть это пла­та, на кото­рую мож­но запи­сать вашу про­грам­му, и эта пла­та смо­жет управ­лять дру­ги­ми шту­ка­ми: напри­мер, зажечь лам­поч­ку, издать звук, вклю­чить элек­тро­при­бор, изме­рить тем­пе­ра­ту­ру, отпра­вить СМС.

На самом базо­вом уровне Arduino про­сто отправ­ля­ет и счи­ты­ва­ет элек­три­че­ские импуль­сы. Напри­мер, мож­но под­клю­чить к нему тер­мо­метр, и Arduino смо­жет счи­тать тем­пе­ра­ту­ру в ком­на­те. А потом, в зави­си­мо­сти от про­грам­мы, отпра­вить сиг­нал на устрой­ство, кото­рое вклю­чит вен­ти­ля­тор.

Или мож­но под­клю­чить к Arduino дат­чик угле­кис­ло­го газа. Arduino мож­но научить счи­ты­вать пока­за­ния дат­чи­ка каж­дые пять минут и, когда уро­вень угле­кис­ло­го газа пре­вы­ша­ет нор­му, запи­щать, зами­гать лам­поч­кой или с помо­щью серии мотор­чи­ков открыть окно.

К Arduino есть мно­го плат рас­ши­ре­ния и дат­чи­ков. Сфе­ры при­ме­не­ния пла­ты почти без­гра­нич­ны: авто­ма­ти­за­ция, систе­мы без­опас­но­сти, умный дом, музы­ка, робо­то­тех­ни­ка и мно­гое дру­гое. Вот что мож­но делать на этой умной ита­льян­ской пла­те и на её рос­сий­ских и зару­беж­ных кло­нах.

1. Робот-бармен с Bluetooth-управлением

Слож­ность: 4/5.

Вре­мя: 5/5.

Робот-бармен с Bluetooth-управлением

Неза­ме­ни­мое устрой­ство для любой вече­рин­ки: рабо­та­ет от вось­ми бата­ре­ек, гото­вит мно­го кок­тей­лей и управ­ля­ет­ся без про­во­дов. В осно­ве меха­ни­че­ско­го бар­ме­на — пла­та Arduino, при­во­ды для пози­ци­о­ни­ро­ва­ния шей­ке­ра и пода­чи напит­ков, дат­чи­ки поло­же­ний.

Глав­ная слож­ность при изго­тов­ле­нии — инже­нер­ная. Нуж­но точ­но при­кру­тить все дета­ли и соеди­нить их меж­ду собой, что­бы ёмкость ока­зы­ва­лась точ­но под нуж­ны­ми бутыл­ка­ми.

Подроб­но­сти: usamodelkina.ru.

2. Светящийся куб на 512 светодиодов

Слож­ность: 3/5.

Вре­мя: 3/5.

Светящийся куб на 512 светодиодов

Кра­си­вая шту­ка, кото­рая может све­тить­ся в такт музы­ке как трёх­мер­ный эква­лай­зер и пока­зы­вать 3D-анимацию. А ещё это может рабо­тать как необыч­ный ноч­ник.

Для сбор­ки пона­до­бит­ся дере­вян­ное шас­си с отвер­сти­я­ми, что­бы каж­дый ярус был таким же по раз­ме­ру и фор­ме, что и осталь­ные. Чис­ло све­то­ди­о­дов в каж­дой гра­ни выбра­но не слу­чай­но: 8 ламп = 8-битная логи­ка, самая про­стая в про­грам­ми­ро­ва­нии и управ­ле­нии через кон­трол­лер.

Подроб­но­сти: instructables.com.

3. Взломщик кодовых замков

Слож­ность: 5/5.

Вре­мя: 4/5.

Светящийся куб на 512 светодиодов

Этот про­ект раз­ра­бо­тал хакер Сэми Кам­кар, и мы при­во­дим его толь­ко в демон­стра­ци­он­ных целях. Для взло­ма, кро­ме пла­ты Arduino, автор взял серво- и шаго­вый дви­га­те­ли для пере­бо­ра ком­би­на­ций и соеди­нил всё на само­дель­ном шас­си из алю­ми­ния. В осно­ве алго­рит­ма — про­стой пере­бор всех ком­би­на­ций, но робот это дела­ет быст­рее чело­ве­ка.

Подроб­но­сти: YouTube.

4. Nod Bang — киваем головой и делаем бит

Слож­ность: 2/5.

Вре­мя: 3/5.

Nod Bang — киваем головой и делаем бит

Идея в том, что­бы не про­сто кивать в такт музы­ке, а кив­ка­ми само­му гене­ри­ро­вать звук. Энд­рю Ли сде­лал спе­ци­аль­ное устрой­ство, кото­рое сле­дит за поло­же­ни­ем голо­вы и в момент накло­на вос­про­из­во­дит нуж­ный звук.

В науш­ни­ки он встро­ил аксе­ле­ро­метр, кноп­ки отве­ча­ют за выбор зву­ка, а Arduino — за вос­про­из­ве­де­ние зву­ка на ком­пью­те­ре через MIDI-интерфейс. Что­бы всё выгля­де­ло эффект­нее, у кно­пок есть под­свет­ка, и они тоже дела­ют бит.

Подроб­но­сти: YouTube.

5. Поющее растение

Слож­ность: 2/5.

Вре­мя: 2/5.

Поющее растение

По сути это тер­мен­вокс, кото­рый сде­ла­ли в виде рас­те­ния. Все осталь­ные прин­ци­пы рабо­ты оста­лись теми же: звук воз­ни­ка­ет при дви­же­нии рук, и раз­ные дви­же­ния гене­ри­ру­ют раз­ную мело­дию.

Пла­та реги­стри­ру­ет изме­не­ние ампли­ту­ды сиг­на­ла, для чего автор исполь­зу­ет само­дель­ный сен­сор­ный детек­тор для ана­ли­за при­кос­но­ве­ний к цвет­ку. Кро­ме это­го пона­до­би­лась пла­та рас­ши­ре­ния Gameduino и сам цве­ток.

Подроб­но­сти: Vimeo.

6. Замок, который открывается на секретный стук

Слож­ность: 3/5.

Вре­мя: 2/5.

Замок, который открывается на секретный стук

Инте­рес­ная вещь для тех, кто хочет поиг­рать в шпи­о­нов или пус­кать в ком­на­ту толь­ко сво­их дру­зей. Замок рас­по­зна­ёт стук по две­ри и срав­ни­ва­ет его с базо­вым зву­ча­ни­ем, кото­рое уста­но­вил вла­де­лец. Если сов­па­да­ет — при­во­ды ото­дви­га­ют замок и дверь откры­ва­ет­ся, если нет — ниче­го не про­ис­хо­дит, мож­но посту­чать зано­во.

Что­бы уста­но­вить новый стук на откры­тие, нуж­но зажать кноп­ку на руч­ке и посту­чать по две­ри новым спо­со­бом. Пье­зо­сен­сор рас­по­зна­ёт виб­ра­ции и запи­сы­ва­ет их в память пла­ты.

Подроб­но­сти: grathio.com.

7. Горшок для цветов с автополивом

Слож­ность: 4/5.

Вре­мя: 3/5.

Замок, который открывается на секретный стук

Полез­ный гор­шок для тех, кто забы­ва­ет полить цве­ты перед отъ­ез­дом или про­сто не зна­ет, как часто надо их поли­вать. Вся элек­тро­ни­ка, насо­сы и ёмкость для воды нахо­дят­ся внут­ри горш­ка. Для каж­до­го рас­те­ния мож­но запро­грам­ми­ро­вать свой режим поли­ва в каж­дом горш­ке.

Основ­ные харак­те­ри­сти­ки чудо-горшка:

  • встро­ен­ный резер­ву­ар для воды;
  • дат­чик кон­тро­ля уров­ня влаж­но­сти поч­вы;
  • насос для пода­чи воды;
  • дат­чик уров­ня воды в резер­ву­а­ре;
  • све­то­ди­од, инфор­ми­ру­ю­щий о недо­стат­ке воды в резер­ву­а­ре.

Подроб­но­сти: usamodelkina.ru.

8. Драм-машина

Слож­ность: 1/5.

Вре­мя: 2/5.

Драм-машина

Про­стая драм-машина на Arduino. Про­ект инте­ре­сен тем, что это не обыч­ный пере­бор запи­сан­ных семплов, а насто­я­щая гене­ра­ция зву­ка с помо­щью встро­ен­но­го желе­за. Ещё здесь есть ана­ли­за­тор спек­тра зву­ка: через видео­вы­ход мож­но посмот­реть на диа­грам­мы и частот­ные харак­те­ри­сти­ки.

Мате­ма­ти­че­ская осно­ва это­го устрой­ства — раз­ло­же­ние в ряд Фурье, кото­рое реша­ет­ся под­клю­че­ни­ем стан­дарт­ной биб­лио­те­ки.

Подроб­но­сти: YouTube.

9. Шагающий робот

Слож­ность: 2/5.

Вре­мя: 1/5.

Шагающий робот

Про­стой в изго­тов­ле­нии четы­рёх­но­гий робот, кото­рый шага­ет и само­сто­я­тель­но пре­одо­ле­ва­ет пре­пят­ствия в сан­ти­метр высо­той.

Что­бы его сде­лать, вам пона­до­бят­ся сер­во­мо­то­ры для ног, немно­го про­во­ло­ки и любой пла­стик, из кото­ро­го дела­ет­ся шас­си. Для пита­ния — акку­му­ля­тор любой моде­ли, кото­рый кре­пит­ся на спине робо­та.

Подроб­но­сти: xakep.ru.

10. Робот-пылесос

Слож­ность: 4/5.

Вре­мя: 5/5.

Робот-пылесос

Дмит­рий Ива­нов из Сочи собрал насто­я­щий робот-пылесос, кото­рый дела­ет всё то же самое, что и про­мыш­лен­ные устрой­ства, толь­ко с воз­мож­но­стью тон­кой настрой­ки под себя и свою квар­ти­ру.

Основ­ные дета­ли — пла­та Arduino, 6 инфра­крас­ных дат­чи­ков, тур­би­на с дви­га­те­лем и щёт­ка­ми и акку­му­ля­тор. Ещё у робо­та есть дат­чи­ки столк­но­ве­ния, кото­рые помо­га­ют объ­ез­жать пре­пят­ствия, и кон­трол­лер акку­му­ля­то­ра, кото­рый сле­дит за уров­нем бата­рей и пре­ду­пре­жда­ет о том, что пыле­сос надо заря­дить.

Подроб­но­сти: habr.com.

Архивы Arduino | Каталог самоделок

Биометрический замок для авто

Arduino

В продолжении темы о модулях Arduino хочется предложить интересный проект, связанный биометрией. Собрав описываемое

Пульт

Arduino

Благодаря Arduino можно собрать универсальный пульт дистанционного управления (ПДУ). Очень удобно, когда с одного

Часы с LED-индикаторами на Arduino

Arduino

После создания множества прототипов Arduino на макетной плате, я решил сделать что-то полезное, то,

Мультитестер на Arduino своими руками

Arduino

За универсальным тестером будущее. Всего лишь при подсоединении щупов, универсальный пробник определяет сопротивление, ёмкость,

Офисный шпион KeySweeper

Arduino

Речь пойдет о перехвате данных с беспроводных клавиатур, в которых используется радиочастотный передатчик NRF24L0

Толщиномер лакокрасочных покрытий на Arduino

Arduino

Необходимость в толщиномере лакокрасочных покрытий (ЛКП) особо ощутима при покупке автомобиля с пробегом. Только

Программатор USBasp для AVR контроллеров Arduino

Arduino

USBasp S51&AVR — простой внутрисхемный USB-программатор для контроллеров серии S51 фирмы Atmel: AT89S51, AT89S52,

Прошивка плат Arduino

Arduino

В этой инструкции, для примера, рассмотрим начало работы в операционной системе Windows. Для операционных

Делаем собственный аналог Ардуино Уно своими руками

В уроке мы покажем вам, как сделать свою собственную плату Arduino Uno своими руками, используя микроконтроллер ATmega328p IC. В итоге вы сможете понимать как в  дальнейшем делать аналоги любых плат, плюс создавать свои. Может быть вы даже откроете свою компанию по производству плат и микроконтроллеров.

Так как Ардуино является платформой с открытым исходным кодом, довольно легко узнать о внутренностях и деталях всего того, что делает Arduino тем, чем она является. Таким образом, в этом уроке мы рассмотрим схему Arduino Uno, немного изменим ее в соответствии с нашими потребностями, изготовим под нее печатную плату и припаяем необходимые компоненты для создания финального продукта.

Мы не будем использовать какие-либо SMD-компоненты для создания своей версии Arduino Uno, потому что не у всех есть паяльная станция, а иногда найти SMD-компоненты очень сложно. Кроме того, наш метод в большинстве случаев дешевле, чем компоненты SMD. Для тех кто, только начинает разбираться в электронике - технологию поверхностного монтажа печатных плат также называют ТМП (технология монтажа на поверхность), SMT (англ. surface mount technology) и SMD-технология (от англ. surface mounted device — прибор, монтируемый на поверхность), а 

компоненты для поверхностного монтажа также называют «чип-компонентами».

Шаг 1. Изменения в оригинальной версии

Прежде всего давайте поговорим об изменениях, которые собираемся внести в оригинальную схему Arduino Uno, которую вы можете увидеть выше или скачать ниже.

Изменения будут следующими:

  • Мы не будем использовать какие-либо компоненты SMD. Все элементы будут в формате сквозных отверстий.
  • Мы не нашли ни одного чипа FTDI в формате сквозного отверстия, поэтому преобразование USB в TTL не будет выполняться. Для программирования нового Arduino будет использоваться отдельная отладочная плата FTDI.
  • Оригинальный Arduino использует компаратор Mosfet, чтобы определить, подключаем ли мы плату с помощью источника питания USB или постоянного тока. Но в нашей версии мы будем вручную переключать это с помощью перемычки.
  • Традиционно используется микросхема LP2985 от Texas Instruments, чтобы получить источник питания 3,3 В на борту. Но из-за недоступности платы в формате TH мы будем использовать простой линейный регулятор. Таким образом, LM1117 должен быть очевидным выбором, но чтобы сохранить стоимость изготовления еще ниже, мы будем использовать LM317 с R1 и R2 как 240E и 390E соответственно.
  • Последнее, что нужно на плате, - это достаточное количество линий питания и два разъема для каждого порта IO ввода-вывода. Поэтому мы будем размещать ряд разъемов папа и мама вокруг платы, что поможет подключить большее количество устройств непосредственно к Arduino.

Учитывая все изменения, мы можем записать окончательный список компонентов.

Шаг 2. Необходимые компоненты

Компоненты, которые вам нужны для этого проекта. Везде, где количество не указано, считайте его единственным.

  • Микроконтроллер Atmel Atmega328p-pu
  • 28-контактная база IC
  • 16 МГц кварцевый генератор
  • конденсатор 22 пФ - 2 шт.
  • конденсатор 100 нФ - 4 шт.
  • Электролитический конденсатор 100 мкФ - 3 шт.
  • 3 мм красный светодиод - 2 шт.
  • 330E 1/4W резистор - 2 шт.
  • 240E 1/4W резистор - 1 шт.
  • 390E 1/4W резистор - 1 шт.
  • 10K 1/4W резистор - 1 шт.
  • Кнопка для сброса
  • Диод общего назначения 1N4007
  • Линейный регулятор напряжения 7805
  • Линейный регулятор переменного напряжения LM317
  • DC разъем мама
  • 2-контактный винтовой клеммный блок
  • много разъемов "папа" и "мама"

Кроме всего вышеперечисленного для своей собственной Arduino Uno вам также понадобится паяльное оборудование и некоторые аппаратные средства, чтобы облегчить жизнь.

Вам также понадобится программатор USBASP ICSP или конвертер USB в TTL, такой как FTDI для программирования Arduino с вашего компьютера.

Вот проектная спецификация от компании Easyeda:

Собираем все компоненты и переходим к следующему шагу.

Шаг 3. Рисуем окончательную схему

Чтобы нарисовать окончательную схему, использовали Easyeda, набор инструментов EDA на основе веб-технологий. На этом портале очень просто рисовать большие схемы. Также это онлайн сервис. Таким образом, благодаря удобству использования что-то лучшее найти сложно. Рекомендуем вам использовать в своих проектах. Схема, которая разработана может быть скачена по ссылке ниже, PDF документ:

Шаг 4. Создаем печатную плату

Как только схема завершена, пришло время сделать печатную плату. Мы использовали веб-сайт JLCPCB (ссылка), чтобы сделать печатную плату. Эти ребята являются одними из лучших в производстве печатных плат в последние дни.

После завершения проектирования схемы преобразуйте ее в печатную плату и спроектируйте печатную плату на веб-сайте easyEDA (ссылка). Будьте терпеливы. Ошибка на этом шаге испортит вашу печатную плату. Проверьте несколько раз перед генерацией файла gerber. Вы также можете проверить 3d модель вашей платы здесь. Нажмите на создание файла gerber и оттуда вы можете напрямую заказать эту плату через JLCPCB. Загрузите файлы gerber, выберите правильную спецификацию, ничего не меняйте в этом разделе. Оставьте как есть. Это достаточно хорошие настройки для старта. Разместите заказ. Вы получите его через 1-2 недели.

Шаг 5. Пайка компонентов

После того, как вы получили печатную плату, пришло время припаять компоненты на неё, чтобы сделать конечный продукт. В этом нет ничего сложного. Просто держите распечатку схемы перед собой и начинайте размещать компоненты по одному на печатной плате. Убедитесь, что после завершения этого шага нет короткого замыкания по питанию и заземлению.

Одна вещь, которую стоит пояснить, заключается в том, что значения конденсаторов не обязательно должны быть идеальными. Нечто близкое к тем величинам, что мы обсуждали выше, вполне будет работать. То же самое касается резисторов. Но сохраните значения R1 и R2 LM317.

Одна вещь, которую вы можете найти странной, что у arduino, который мы сделали, есть две кнопки сброса. На самом деле, когда разрабатывали макет, использовали четырехконтактную кнопку для справки. Но во время пайки стало понятно, что у нас её нет. Поэтому мы припаяли 2 двухполюсных переключателя сброса на место. Там нет ничего особенного.

Шаг 6. Запуск загрузчика на микроконтроллере

Если вы используете конвертер USB - TTL для программирования микроконтроллера, тогда загрузчик Arduino должен быть установлен в новый чип atmega328p. Об этом мы сделаем следующий большой урок. После этого процесс загрузки кода будет точно таким же, как и в обычной Arduino.

Если вы используете программатор ICSP, то есть программатор USBASP, тогда этот шаг не нужен. Но процесс загрузки кода немного отличается.

Шаг 7. Программируем Ардуино

Подключите коммутационную плату к Arduino и подключите её к компьютеру. Откройте диспетчер устройств и наблюдайте за com-портом конвертера usb - ttl. В Arduino IDE выберите com-порт и плату правильно. Теперь здесь начинается сложная часть.

Если ваша плата FTDI имеет вывод DTR и она подключена для сброса, просто сохраните программу и загрузите ее в Arduino как обычно. Ошибки не будет. Но если у вас нет пина DTR, как у нас, то, прежде чем нажать кнопку загрузки, удерживайте кнопку сброса на плате, а затем нажмите кнопку загрузки. Удерживайте кнопку до тех пор, пока программа не скомпилируется, когда IDE говорит «загрузка», затем отпустите переключатель сброса. Затем код будет загружен.

Шаг 8. Итоговый результат

Здесь вы можете увидеть, что мы загрузили 3-контактный код в новую arduino, и все работает, как и предполагалось. Используя только 3 контакта, мы контролируем 6 светодиодов с промежутком 200 мс между ними. Мы проверяли другие программы, все они работают без нареканий.

Проекты ардуино на Arduino Uno, Mega, Nano для начинающих

В этой статье вы найдете обзор инженерных проектов ардуино с кратким описанием каждого из них. Мы постарались не просто рассказать о проектах для начинающих, но и дать краткие комментарии с примерами и схемами реализации. Большинство проектов могут быть созданы с контроллерами Arduino Uno R3, Nano или Mega. Надеемся, что ваше знакомство с платформой продолжится, и вы сможете не только повторить уже существующие идеи, но и придумать свои решения, вдохновленные примерами.

Проекты Arduino для начинающих

Если посмотреть  на все проекты ардуино, информация о которых доступна в интернете, то можно их разделить на несколько основных групп:

  • Начальные учебные проекты, не претендующие на какое-то важное практическое использование, но помогающие разобраться в разных аспектах платформы.
    • Мигающие светодиоды – маячок, мигалка, светофор и другие.
    • Проекты с датчиками: от простейших аналоговых до цифровых, использующих разнообразные протоколы для обмена данными.
    • Устройства регистрации и отображения информации.
    • Машины и устройства с сервоприводами и шаговыми двигателями.
    • Устройства с использованием различных беспроводных видов связи и GPS.
  • Проекты для автоматизации жилья – умные дома на Arduino, а также отдельные элементы управления домашней инфраструктурой.
  • Разнообразные автономные машины и роботы.
  • Проекты для исследования природы и автоматизации сельского хозяйства
  • Необычные и креативные – как правило, развлекательные проекты.

Проекты Ардуино

По каждой из этих групп можно найти множество самых разнообразных материалов в книгах и на сайтах. В этой статье мы начнем знакомство с описанием наиболее простых проектов, с которых рекомендуется стартовать начинающим.

Как создавать проект на ардуино

Проект Ардуино – это всегда сочетание электронной схемы, некоторых связанных друг с другом аппаратных и механических устройств, системы питания и программного обеспечения, управляющего всем этим хаосом. Поэтому приступая к работе, вы должны твердо понимать, что создавая устройство в одиночестве, вы должны будете стать и программистом, и электронщиком, и конструктором.

Ардуино уно

Если речь идет не об учебном проекте, то вы обязательно столкнетесь со следующими этапами реализации с такими вот задачами:

  • Придумать что-то, что будет полезно и (или) интересно для окружающих. Даже самый простой проект несет какую-то пользу – как минимум, он помогает изучать новые технологии.
  • Собрать схему, подключить модули друг к другу и к контроллеру.
  • Написать скетч (программу) в специальной среде и загрузить ее в контроллер.
  • Проверить, как все работает вместе, и исправить ошибки.
  • После тестирования – готовиться к созданию готового устройства. Это означает, нужно собрать устройство в каком-то пригодном для эксплуатации корпусе, предусмотреть систему питания, связи с окружающей средой.
  • Если вы собираетесь распространять созданные вами устройства, то придется также заняться дизайном, системой транспортировки, задуматься о безопасности использования необученными пользователями и обучением этих самых пользователей.
  • Если ваше устройство работает, оно протестировано и обладает какими-то преимуществами перед другими решениями, то можно попытаться сделать из вашего инженерного уже бизнес-проект, попробовать привлечь инвестиции.

Каждый из этих этапов создания проекта достоин отдельной статьи. Но мы уделим главное внимание этапам сборки электронных схем (основы электроники) и программирования контроллера.

Электронные схемы

Электронные схемы обычно собираются с применением макетных плат, скрепляющих элементы друг с другом без пайки и скрутки. О том, как работают модули и схемы подключения можно узнать на нашем сайте. Обычно в описании проекта указаны способы монтажа деталей. Но для большинства популярных модулей есть уже десятки готовых схем и примеров в интернете.

Программирование

Создание и прошивка скетчей производится в специальной программе  – среде программирования.  Наиболее популярной версией такой среды является Arduino IDE. На нашем сайте вы сможете найти информацию о том, как скачать, установить и настроить эту программу.

Где купить все необходимое

Мы собрали ссылки Aliexpress на стартовые наборы Arduino Starter Kit, в которых есть все самое необходимое для создания своих первых проектов.

 

Простые проекты Ардуино

Давайте начнем наш обзор с традиционно самых простых, но очень важных проектов, включающих в себя минимальное количество элементов: светодиоды, резисторы и, конечно же, плату ардуино. Все примеры рассчитаны на использование Arduino Uno, но с минимальными изменениями будут работать на любой плате: от Nano и Mega до Pro, Leonardo и даже LilyPad.

Проект с мигающим светодиодом – маячок

Все без исключения учебники и пособия для начинающих по ардуино стартуют с примера мигания светодиодом. Этому есть две причины: такие проекты требуют минимального программирования и их можно запустить даже без сборки электронной схемы – уж что-что, а светодиод есть на любой плате ардуино. Поэтому и мы не станем исключением – давайте начнем с маячка.

Проекты ардуино для начинающих

 

Нам понадобится:

  • Плата Ардуино Uno, Nano или Mega со встроенным светодиодом, подключенным к 13 пину.
  • И все.

Что должно получиться в итоге:

Светодиод мигает – включается и выключается через равные промежутки времени (по умолчанию – 1 сек). Скорость включения и выключения можно настраивать.

Схема проекта

Схема проекта довольно проста:  нам нужен только контроллер ардуино со встроенным светодиодом, подсоединенным к пину 13. Именно этим светодиодом мы и будем мигать. Подойдут любые популярные платы: Uno, Nano, Mega и другие.

Подсоединяем Arduino к компьютеру, убеждаемся, что плата ожила и замигала загрузочными огоньками. Во многих платах «мигающий» скетч уже записан в микроконтроллер, поэтому светодиод может начать мигать сразу после включения.

С помощью такого простого проекта маячка вы можете быстро проверить работоспособность платы: подключите ее к компьютеру, залейте скетч и по миганию светодиода сразу станет понятно – работает плата или нет.

Программирование в проекте Ардуино

Если в вашей плате нет загруженного скетча маячка – не беда. Можно легко загрузить уже готовый пример, доступный в среде программирования Ардуино.

Открываем программу Arduino IDE, убеждаемся, что выбран нужный порт.

Ардуино проверить портПроверка порта Ардуино – выбираем порт с максимальным номером

Затем открываем уже готовый скетч Blink – он находится в списке встроенных примеров. Откройте меню Файл, найдите подпункт с примерами, затем Basics и выберите файл Blink.

Blink ArduinoIDEОткрываем пример Blink в Ардуино IDE

В открытом окне отобразится исходный код программы (скетча), который вам нужно будет загрузить в контроллер. Для этого просто нажимаем на кнопку со стрелочкой.

Кнопки компиляции и загрузки скетчаКнопки компиляции и загрузки скетчаArduino Загрузка завершенаИнформация в Arduino IDE – Загрузка завершена

Ждем немного (внизу можно отследить процесс загрузки) – и все. Плата опять подмигнет несколькими светодиодами, а затем один из светодиодов начнет свой размеренный цикл включений и выключений. Можно вас поздравить с первым загруженным проектом!

Проект маячка со светодиодом и макетной платой

В этом проекте мы создадим мигающий светодиод – подключим его с помощью проводов, резистора и макетной платы к ардуино. Сам скетч и логика работы останутся таким же – светодиод включается и выключается.

Графическое изображение схемы подключения доступно на следующем рисунке:

Подключение Ардуино

Другие идеи проектов со светодиодами:

  • Мигалка (мигаем двумя свтодиодами разных цветов)
  • Светофор
  • Светомузыка
  • Сонный маячок
  • Маячок – сигнализация
  • Азбука Морзе

Подробное описание схемы подключения и логики работы программы можно найти в отдельной статье, посвященной проектам со светодиодами.

Проекты Ардуино в Интернете

В интернете можно найти огромное количество примеров самых разных проектов с Arduino. Мы сделали небольшую подборку самых необычных проектов.

Сегодня без труда можно найти сотни проектов, созданных руками инженеров-энтузиастов по всему миру. Невозможно сделать качественный обзор всех их. В данной подборке мы просто сделали небольшой обзор

Управление телевизором силой мысли и Ардуино.

Управление телевизором силой мысли и АрдуиноУправление телевизором силой мысли и Ардуино

Этот оригинальный проект кажется невероятным, ведь для переключения канала нужен не пульт, а мысль о его смене. Для создания потребуется Ардуино Уно, игра Star Wars Force Trainer, инфракрасные приемник и передатчик.

Проект был реализован Дэниэлом Дэвисом в домашних условиях. За основу он взял игру 2009 года Star Wars Force Trainer и разобрал ее. Сама игра содержит гарнитуру, которая может обнаружить электрические поля разума (аналогично ЭЭГ). Внутри был обнаружен чип NeuroSky ЭЭГ, который Дэниэл подключил к плате Ардуино. Данные ЭЭГ собираются и преобразовываются на компьютере.

С помощью  serial монитора можно посмотреть сигналы, которые передает пульт на ИК приемник при переключении каналов. Далее записывается код кнопки и пишется небольшая программа.

После завершения программной части на человека надевают шлем, и он может переключать канаты телевизора и выключать его путем сосредоточения мыслей.

Механическая рука, которая записывает время на доске.

Механическая рука, которая записывает время на доскеМеханическая рука, которая записывает время на доске

Plotclock является простейшим роботом, который состоит из руки с маркером, которая пишет на доске текущее время. Когда время изменяется, рука стирает ранее записанное число и пишет новые значения. Проект постоянно развивается, описанная технология является простейшей.

Для реализации проекта нужны 3D принтер, Ардуино Уно, 3 сервомотора, болты и гайки, маркер для стираемой доски, белая поверхность.

Механическая составляющая робота выполняется из пластиковых элементов и соединенных между собой механизмов. Управляется рука с помощью платы Ардуино и трех серводвигателей.

Окей Google, Сезам, открой дверь

Окей Google, Сезам, открой дверьОкей Google, Сезам, открой дверь

В проекте реализуется открытие двери с помощью определенной голосовой команды. Чтобы войти в помещение, достаточно назвать фразу «Сезам, откройся».

Для создания потребуются Ардуино Уно, серводвигатель, Bluetooth модуль.

Для разблокирования двери используются команды Google Now. Для смартфонов и планшетов есть приложение с названием «Сезам», которое и отправляет команду дверному замку при произношении слов «О’кей Google, Сезам, откройся».

Сервопривод подключается к дверному замку. Модуль Bluetooth ожидает команду, и при ее получении подает сигнал Ардуино через serial  порт. Arduino Uno отдает команду сервоприводу и дверь открывается.

Светодиодный куб 4х4х4.

Светодиодный куб 4х4х4

Куб из светодиодов на базе Ардуино – это развлекательное осветительное устройство. Он может быть разного размера с различными режимами подсветки. Куб оснащен кнопкой переключения режимов.

Для создания понадобится 64 светодиода, 4 резистора 100 Ом, проводники, макетная плата, коннекторы, коробка, источник питания на 9 В и плата Ардуино Уно.

На коробке рисуется или распечатывается эскиз квадрата 4х4. Проделываются отверстия, в которые помещаются светодиоды. Аноды нужно соединить между собой, затем коробку требуется повернуть и вытащить диоды. Аналогично формируются еще 3 слоя. Все слои нужно соединить с помощью оставшихся катодов. На макетную плату ставится получившийся куб и подключается к плате.

Робот пылесос

Робот пылесосРобот пылесос

На базе Ардуино можно создать полезную вещь для дома – робота-уборщика. Самостоятельно сделанная модель не будет уступать по своим характеристикам магазинному экземпляру.

Для сборки потребуется:

  • Arduino;
  • драйвер L298N для управления двигателем;
  • миниатюрные двигатели с редуктором и колесами;
  • 6 инфракрасных датчиков;
  • двигатель для турбины;
  • турбина;
  • двигатели для щеток;
  • датчики столкновения;
  • 4 аккумулятора;
  • повышающий и понижающий преобразователи тока;
  • контроллер для батареи.

Пылесос оборудован ИК датчиками. Они реагируют, когда пылесос приближается к препятствию, и дают ему команду остановиться и развернуться. При столкновении со стеной или другим препятствием срабатывает один из выключателей, соединяющий бампер и корпус робота.

Система распознавания лиц и слежения за ними на Ардуино.

Система распознавания лиц и слежения за ними на АрдуиноСистема распознавания лиц и слежения за ними на Ардуино

Веб-камера закрепляется на поворотном механизме и подключается к ПК, на котором установлено программное обеспечение OpenCV. Когда программа обнаруживает лицо, начинается вычисление его центральной точки. Полученные координаты передаются на микроконтроллер Ардуино, который управляет сервомоторами и следит за лицом.

Для реализации потребуются:

  • программное обеспечение Arduino IDE, OpenCV;
  • плата Ардуино Уно;
  • 2 сервомотора;
  • веб-камера.

Автоматизированная система для аквариума

Автоматизированная система для аквариумаАвтоматизированная система для аквариума

Автоматизация задач для аквариума помогает облегчить жизнь пользователя. Проект должен отвечать за следующие действия:

  • подача подсветки того или иного цвета в зависимости от условий;
  • отображение времени;
  • регулирование компрессора;
  • включение и выключение фильтров;
  • отображение данных о температуре, влажности.

Чтобы собрать устройство, потребуются плата Ардуино Уно, пьезо сигналка, RGB лента, белая диодная лента, датчик температуры и влажности, LCD экран, часы, 2 реле, ик-приемник, транзисторы.

Схем реализации прибора существует множество. Пример одной из них приведен ниже.

Требуется также прописать код для включения того или иного цвета в зависимости от условий и настроить работу ЖК экрана.

Теплица для растений

Теплица для растенийТеплица для растений

В умной теплице для цветов происходит мониторинг и регулировка температуры и освещения и полив почвы. Особенно это актуально для теплолюбивых тропических растений, в которых необходимо постоянно поддерживать высокую температуру. Управлять можно автоматически или удаленно с планшета или смартфона.

Чтобы собрать проект, нужны следующие компоненты:

  • Ардуино Уно;
  • USB кабель;
  • плата прототипирования;
  • провода;
  • фоторезистор;
  • резистор на 10 кОм;
  • температурный датчик;
  • модуль температуры и влажности окружающей среды;
  • модуль влажности почвы.

Фоторезистор отвечает за измерение освещенности. Температурный сенсор получает температуру воздуха. Модуль влажности почвы помещается в землю и измеряет уровень воды в ней.

Отслеживание потребляемого электричества в реальном времени при помощи Ардуино и LabVIEW.

Отслеживание потребляемого электричества в реальном времени при помощи Ардуино и LabVIEWОтслеживание потребляемого электричества в реальном времени при помощи Ардуино и LabVIEW

Прибор может использоваться в умном доме в качестве измерителя потребляемой электроэнергии на современных счетчиках. Считывание информации происходит через светодиод счетчика – просчитывается длительность между миганиями.

Принцип работы следующие. Ардуино считывает частоту миганий и подает информацию через беспроводной модуль. Модуль, установленный на компьютер, получает эти данные и передает их в программу LabVIEW, в которой отображаются данные потребления мощности в режиме реального времени.

Мигание светодиода детектирует фоторезистор. Аналоговые данные считываются с помощью делителя напряжения.

Для работы потребуются:

  • Ардуино;
  • фоторезистор;
  • светодиод;
  • модуль Xbee;
  • программное обеспечение Arduino IDE, LabView;
  • простые и подстроечные резисторы;
  • провода.

В программе будет отображаться график потребления за последние 5 минут и в реальном времени.

Аудиоплеер

АудиоплеерАудиоплеер

Своими руками на базе Ардуино можно создать аудиопроигрыватель. Его конструкция проста – он состоит из динамика, транзистора, micro-sd карты с записанными на нее треками. В качестве платы используется Ардуино, также можно взять контроллер Seeeduino 2.21 или Garagino на ATmega328.

Для сборки нужны:

  • контроллер;
  • карт-ридер;
  • динамик;
  • печатная плата;
  • карта памяти с записанными аудиотреками;
  • транзистор;
  • резистор;
  • провода.

Работает плеер следующим образом. Ардуино загружает файлы с расширением .wav карты памяти. Происходит генерирование сигнала, который выводится через динамики, подсоединенные к пину 9 на плате.

Предварительно песню нужно преобразовать в формат .wav. Сделать это можно с помощью самого простого онлайн-конвертера. Музыкальные файлы имеют ограничения при воспроизведении мелодии. Транзистор не сможет прочитать сложные .wav-файлы, поэтому советуется преобразовать треки к следующему виду: 16 кГц в секунду, моно канал, бит на сэмпл – 8.

Музыка записывается на заранее отформатированную карту памяти и сохраняется с простыми наименованиями.После сбора схемы требуется прописать код, включить питание, после чего начнется воспроизведение музыки.

Рекомендации по работе с проектами Ардуино в Интернете

Найдя в интернете интересующий вас проект, попробуйте сначала понять его принцип действия. Посмотрите, как связаны между собой элементы, какие функции они выполняют, каковы ограничения. Попробуйте сперва создать прототип устройств (электронная схема с прошивкой) и только затем пытайтесь полностью повторить то, что видите в описании.

Другие идеи проектов

Проекты умного дома на Ардуино

Проекты умного дома являются одним из примеров того, как перейти от «игрушек» и тренажеров к реальным системам, помогающими и облегчающим жизнь. Как правило, с помощью ардуино невозможно создать полноценные автономные решения, но отдельные компоненты сделать вполне реально.

При этом нужно понимать, что сталкиваясь с реальными  инфраструктурными объектами, мы должны соблюдать особую предусмотрительность при работе с электричеством, отоплением, водопроводом под давлением, канализацией. Любые эксперименты здесь нужно проводить обязательно под контролем профессионала.

Что может являться прототипом умного дома на ардуино:

  • Системы освещения с автоматическим включением и отключением в зависимости от показателей датчиков. Наиболее популярнее варианты – использовать датчик освещенности, PIR датчик движения или датчик звука.
  • Дистанционно управляемые электрические приборы. Например, включение или выключение системы отопления в зависимости от температуры или умное управление освещением в помещениях. Здесь вам понадобятся различные виды реле и один из механизмов обеспечения беспроводной связи: WiFi, GPRS, Bluetooth или радиоканал. Управлять устройствами можно через Web-интерфейс (через браузер) или с использованием соответствующего мобильного приложения (можно написать самому или выбрать одну из готовых платформ).
  • Всевозможные системы учета: воды, тепла, электроэнергии. Начинающим доступны любительские датчики напора воды, температуры, влажности, силы тока. Можно использовать и профессиональные приборы, взаимодействуя с ними по одному из промышленных протоколов. Полученные данные можно собирать локально или отправлять в облако для последующего анализа.
  • Охранные системы и контролирование внештатных ситуаций. Здесь понадобится различные датчики присутствия, движения, звука, магнитные датчики Холла и другие. Естественно, не обойтись без коммуникаций и возможности быстрой передачи информации владельцу через интернет.

Каждое из этих направлений может содержать в себе десятки разных проектов. Вы можете без труда найти себе подходящий вариант в интернете или в одной из наших статей.

Проекты «Зеленой робототехники»

Юные ардуинщики, живущие в небольших городах и сельской местности, где много природы и не очень много «цивилизации», могут с успехом использовать ардуино для исследования и охраны природы, а также автоматизации сельского хозяйства. Вот некоторые из идей проектов, которые можно реализовывать своими силами на уровне прототипов и готовых решений:

  • Умная теплица
  • Полив растений
  • Умный инкубатор
  • Умный улей
  • Антигрызуны
  • Умный агроном
  • Умный ошейник для животных
  • Расширенная метеостанция
  • Робот – сеяльщик
  • Счетчик муравьев

Проекты с дронами: аэрофотосъемка, внесение удобрений.

Arduino сайт на русском для начинающих мастеров ардуино

Ардуино для начинающих

Arduino – это возможность делать сложные и умные вещи просто. Идеальный вариант для первых шагов начинающих технических гениев. Вы можете легко собрать электронные схемы из готовых конструкторов и наборов, загрузить готовую программу, которую можно скачать совершенно бесплатно и начать использовать умное электронное устройство.

Arduino – это электронные платы, к которым можно подсоединять различные датчики, двигатели, экраны и много других электронных компонентов. Плата Ардуино будет управлять этими компонентами с помощью программы, который вы в нее загрузите. Самые популярные платы для начинающих – это Arduino Uno, Arduino Mega, Arduino Nano и Arduino Leonardo. Кроме этого есть множество  других вариантов, подходящих для конкретных случаев.

Arduino – это еще и совершенно бесплатная среда программирования Arduino IDE, в которой можно писать программы (скетчи) для контроллера. Программа прошивается в микроконтроллер буквально одним нажатием на кнопку. Никаких особых знаний не требуется!  Вы можете даже не писать программу – просто найти и скачать готовый скетч, который просто откроете в Arduino IDE.

Arduino – это сообщество инженеров, всегда готовых помочь советом. Это огромное количество сайтов с документацией, примерами и схемами. Начать можно с официального сайта, но кроме него сегодня появилось огромное количество сайтов на русском с форумом русскоязычных инженеров.

Arduino для детей

Принято считать, что Arduino довольно сложен для детей средней школы, но это не так! Сегодня есть огромное количество инструментов и технологий, позволяющих без проблем преподавать ардуино на кружках робототехники даже самых маленьких! На нашем сайте вы можете найти уроки Ардуино, помогающие сделать первые шаги в электронике, программировании и робототехнике.

Arduino – это целый мир, в котором можно почувствовать себя волшебником. Лучший инструмент для приобщения детей к технологиям и вдохновленного инженерного творчества! Для обучения детей электронике вы можете использовать как отдельные контроллеры Arduino Uno, Mega или Nano, а также наборы и конструкторы ардуино российских и китайских производителей. Обучение детей программированию Ардуино возможно с использованием среды программирования Arduino IDE или же в визуальных средах ArduBlock, S4A, mBlock, основанных на Scratch.

что можно сделать с его помощью

Arduino – аппаратная вычислительная платформа, которая используется для проектирования и создания электронных устройств различного уровня сложности.

В основе этого электронного конструктора лежит аппаратная платформа для ввода и вывода, которая программируется на языке Processing/Wiring , созданном на базе C++. Из каких компонентов состоит Arduino, что можно сделать с его помощью и как научиться обращаться с этим умным чипом?

Что такое Arduino

Arduino – один из наиболее распространенных миниатюрных контроллеров с набором входов и выходов, который работает по предварительно написанной программе. Этот универсальный контроллер очень удобен для создания прототипов электронных устройств, что делает его популярным не только среди студентов и любителей со всего мира, но и среди продвинутых проектировщиков и изобретателей.

Arduino подкупает своей универсальностью. Используя специальные расширяющие платы, этот контроллер может взаимодействовать с другими девайсами посредством Bluetooth, Wi-Fi, GPRS, осуществлять и принимать телефонные звонки и СМС.

Контроллер является не простой микросхемой, а платой, где реализована готовая схема питания и интерфейсы для присоединения к ПК, входные и выходные разъемы.

Благодаря широкому ассортименту библиотек протоколов, имеется возможность организовать взаимодействие Arduino с сенсорами и сервоприводами, используемыми в современной робототехнике.

А открытая архитектура дает возможность настраивать Arduino под любые цели. А благодаря упрощенному языку программирования, освоить работу с контроллером будет легко даже новичкам. Особенно удобно работать с Ардуино благодаря платформе, которая дает практически мгновенный отклик на запрограммированные команды.

Что можно сделать с Arduino? Мы добавляем уроки по созданию устройств на основе этой платы в нашем разделе Уроки Ардуино. Практически любую оригинальную идею программист, дизайнер или инженер может превратить в рабочий прототип – достаточно лишь приобрести контроллер и дополнительные радиодетали. Также энтузиастов программирования и схемотехники подкупает невысокая стоимость Arduino, которая делает контроллер доступным для широких масс.

Проекты на Arduino: что можно сделать

Рассмотрим несколько оригинальных идей, которые можно реализовать на Arduino. Помимо самой схемы, вам могут понадобиться дополнительные детали, которые выгоднее всего закупать на AliExpress.

Регулятор температуры в доме

Реализовать такой проект можно с использованием нескольких плат Arduino Nano и одной Arduino Uno или Mega, которая будет выступать в роли базы. Связь между модулями можно реализовать с помощью NRF24L01 – модуля радиосвязи, который дает возможность объединять до 6 плат.

В одном корпусе необходимо собрать Arduino Nano, соединенные с датчиками влажности и температуры DHT22, а также модулем NRF24L01. Источником питания может выступать обычная батарейка. Несколько таких устройств необходимо разместить по всем помещениям в доме.

Показатели с Arduino Nano будут передаваться на базу, в роли которой выступает Arduino Mega или Uno. К ней также необходимо присоединить приемник сигнала NRF24L01, источник питания и дисплей LCD для отображения текстовой информации. Располагать «базу» необходимо в непосредственной близости от системы отопления. Принимая и обрабатывая поступающие данные о влажности и температуре, база будет передавать системе отопления команды и повышении или понижении температуры.

ЧПУ-станок

Эта идея является одной из самых сложных в реализации. С помощью Arduino Mega вы сможете реализовать не только ЧПУ-станок, но и 3D принтер. Помимо самой платы, вам необходимы будут драйверы двигателей L298N, а также сами двигатели. Остальная часть работы – это рама и разработка программного кода.

Smart-теплица

Все владельцы огорода или приусадебного участка знают, как много внимания требует к себе теплица и выращиваемая в ней рассада. Необходимо постоянно контролировать влажность почвы, вовремя открывать и закрывать двери и т. д. С помощью Arduino все эти рутинные процессы могут быть автоматизированы.

Используя всего одну плату Arduino Mega и контроллер DHT22, вы сможете фиксировать и выводить на экран информацию о температуре в теплице, а также передавать команды на запуск полива, управление моторами для открытия и закрытия дверей.

Роботы

Роботы – лучшая игрушка не только для детей, но и для взрослых, особенно, когда имеется возможность ими управлять. Используя Arduino и различные подручные материалы, вы сможете сделать робота в любой конфигурации: от наиболее примитивных до сложных моделей.

Например, с помощью ультразвукового дальномера HC-SR04 ваш робот сможет фиксировать расстояние до препятствий и огибать их при движении. Применив драйвер двигателей L293D, вы получите в свое распоряжение 3 сервопривода и 4 двигателя. С помощью модуля HC-06 у вас появится возможность управлять своим детищем по Bluetooth через смартфон.

Конечно, на этом список проектов на Arduino, что можно сделать своими руками, не исчерпывается – возможности здесь ограничены только вашей фантазией и навыками.

● Уроки и проекты Arduino

Что такое Arduino?

Платформа Ардуино пользуется огромной популярностью во всем мире благодаря удобству и простоте языка программирования, а также открытой архитектуре и программному коду. Плата Arduino состоит из микроконтроллера Atmel AVR и элементов обвязки для программирования и интеграции с другими схемами.  Подробнее ...

Установка Arduino IDE

Первое включение. Установка Arduino IDE

Разработка собственных приложений на базе плат, совместимых с архитектурой Arduino, осуществляется в официальной бесплатной среде программирования Arduino IDE. Среда предназначена для написания, компиляции и загрузки собственных программ в память микроконтроллера.  Подробнее ...

Установка Arduino IDE Умный дом и интернет вещей. Элементы, решения, системы управления, проекты

Самый главный компонент любой "умной" системы – его контроллер. Контроллер предназначен для получения информации и управления "умным" домом. В нашем наборе два контроллера! Это плата Arduino MEGA и модуль NodeMCU v3 Lua WI-FI ESP8266 Ch440. Вы можете выбрать любой из них. Подробнее ...
 

Установка Arduino IDE Arduino проект 34: Организация подключения к сети Интернет с помощью модуля Ai-Thinker A6

В предыдущих главе мы рассмотрели мы сделали большие шаги построения "умного дома" –  оснастили его датчиками и исполнительными устройствами и создали и обеспечили определенную степень автоматизации для создания комфорта и безопасности. Теперь пришло время сделать наш "умный дом" устройством IoT (Интернета вещей), чтобы получить доступ к нему для мониторинга и управления из любой точки мира по сети интернет. Организуем доступ контроллеров нашего дома к сети интернет. Подробнее ...
 

Arduino Проект 33:  Модуль GPS. Принцип работы, подключение, примеры

Arduino проект 33:  Модуль GPS. Принцип работы, подключение, примеры

В этом эксперименте рассмотрим работу модуля GPS-приемника, позволяющего определять наше местоположение с помощью глобальной системы GPS, и подключение данного приемника к плате Arduino. GPS (Global Positioning System) – это система, позволяющая с точностью не хуже 100 м определить местоположение объекта.  Подробнее ...

Arduino проект 32: Беспроводная связь. Модуль GSM/GPRS SIM900

Arduino проект 32: Беспроводная связь. Модуль GSM/GPRS SIM900

В этом эксперименте рассмотрим работу модуля GSM/GPRS Shield – платы расширения, позволяющей Arduino работать в сетях сотовой связи по технологиям GSM/GPRS для приёма и передачи данных, SMS и голосовой связи. GSM/GPRS Shield на базе модуля SIMCom SIM900 выпускают несколько производителей, и платы имеют незначительные отличия. Также на некоторых платах расположены: слот для SIM-карты, стандартные 3,5 мм джек для аудиовхода и выхода и разъём для внешней антенны. На плате GSM/GPRS shild имеется несколько перемычек, позволяющих выбрать тип serial-соединения.  Подробнее ...

Arduino Проект 31: Беспроводная связь. Модуль Bluetooth HC-05 Arduino проект 31: Беспроводная связь. Модуль Bluetooth HC-05

В этом эксперименте рассмотрим работу модуля Bluetooth HC-05, позволяющего плате Arduino установить беспроводную связь и обмениваться данными с другими устройствами по протоколу Bluetooth. Bluetooth позволяет объединять в локальные сети любую технику: от мобильного телефона и компьютера до холодильника. При этом одним из немаловажных параметров новой технологии являются низкая стоимость устройства связи (в пределах 20 долларов), его небольшие размеры.  Подробнее ...
 

Arduino проект 30:  Беспроводная связь. Модуль Wi-Fi ESP8266 Arduino проект 30:  Беспроводная связь. Модуль Wi-Fi ESP8266

В этом эксперименте мы познакомимся с модулем ESP8266, с помощью которого можно подключить плату Arduini к сетям Wi-Fi, и напишем скетч для передачи данных датчика температуры на веб-сервис Народный мониторинг. Платы на ESP8266 – это не просто модули для связи по Wi-Fi. Чип, по сути, является микроконтроллером со своими интерфейсами SPI, UART, а также портами GPIO, а это значит, что модуль можно использовать автономно без Arduino и других плат с микроконтроллерами.  Подробнее ...
 

Arduino Проект 29: Работа с Интернетом на примере Arduino Ethernet Shield W5100 Arduino проект 29: Работа с Интернетом на примере Arduino Ethernet Shield W5100

В этом эксперименте мы покажем, как нашей плате Arduino получить доступ к сети Интернет с помощью модуля Ethernet shield W5100. Ethernet Shield позволяет легко подключить вашу плату Arduino к локальной сети или сети Интернет. Он предоставляет возможность Arduino отправлять и принимать данные из любой точки мира с помощью интернет-соединения.  Подробнее ...
 

Arduino проект 28:  Считыватель RFID на примере RC522. Принцип работы, подключение Arduino проект 28:  Считыватель RFID на примере RC522. Принцип работы, подключение

В этом эксперименте мы покажем, как плата Arduino получает доступ к данным RFID-карт и брелоков Mifare с помощью RFID-считывателя RC522C. Идентификация объектов производится по уникальному цифровому коду, который считывается из памяти электронной метки, прикрепляемой к объекту идентификации. Считыватель содержит в своем составе передатчик и антенну, посредством которых излучается электромагнитное поле определенной частоты.  Подробнее ...
 

Arduino проект 27:  SD-карта. Чтение и запись данных Arduino проект 27:  SD-карта. Чтение и запись данных

В этом эксперименте мы покажем, как к плате Arduino подключить SD-карту. Если вашим Аrduino-проектам не хватает памяти, а объем энергонезависимой памяти EEPROM в платах Arduino совсем небольшой, можно использовать внешние носители. Один из самых простых по подключению к платам Arduino – это SD-карта. Можно подсоединиться к SD-карте напрямую, а можно использовать модули.  Подробнее ...
 

Arduino проект 26:  Часы реального времени. Принцип работы, подключение, примеры Arduino проект 26:  Часы реального времени. Принцип работы, подключение, примеры

В этом эксперименте мы рассмотрим модуль часов реального времени на микросхеме DS1307. Микросхема Dallas DS1307 представляет собой часы реального времени с календарем и дополнительной памятью NW SRAM (56 байт). Микросхема подключается к микроконтроллеру при помощи шины I2C. Количество дней в месяце рассчитывается с учетом високосных лет до 2100 г. В микросхеме DS1307 имеется встроенная схема, определяющая аварийное отключение питания  Подробнее ...
 

Arduino проект 25:  ИК-фотоприемник и ИК-пульт. Обрабатываем команды от пульта Arduino проект 25:  ИК-фотоприемник и ИК-пульт. Обрабатываем команды от пульта

В этом эксперименте мы организуем беспроводную ИК-связь, которая нам позволит отправлять на плату Arduino команды с помощью любого ИК-пульта. В качестве приемника будем использовать микросхему TSOP31236. В одном корпусе она объединяет фотодиод, предусилитель и формирователь. На выходе формируется обычный ТТЛ-сигнал без заполнения, пригодный для дальнейшей обработки микроконтроллером.  Подробнее ...
 

Arduino Проект 24:  3-осевой гироскоп + акселерометр на примере GY-521 Arduino проект 24:  3-осевой гироскоп + акселерометр на примере GY-521

В этом эксперименте мы познакомимся с акселерометром и гироскопом и будем с помощью Arduino получать показания с этих датчиков. Модуль GY-521 на микросхеме MPU6050 содержит гироскоп, акселерометр и температурный сенсор. На плате модуля GY-521 расположена необходимая обвязка MPU6050, в том числе подтягивающие резисторы, стабилизатор напряжения на 3,3 В с малым падением напряжения с фильтрующими конденсаторами. Обмен с микроконтроллером осуществляется по шине I2C.  Подробнее ...
 

Arduino проект 23:  Ультразвуковой датчик расстояния HC-SR04. Принцип работы, подключение, пример Arduino проект 23:  Ультразвуковой датчик расстояния HC-SR04. Принцип работы, подключение, пример

В этом эксперименте мы рассмотрим ультразвуковой датчик для измерения расстояния и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. Ультразвуковой дальномер HC-SR04 – это помещенные на одну плату приемник и передатчик ультразвукового сигнала. Излучатель генерирует сигнал, который, отразившись от препятствия, попадает на приемник. Измерив время, за которое сигнал проходит до объекта и обратно, можно оценить расстояние.  Подробнее ...
 

Arduino проект 22:  Датчики газов. Принцип работы, пример работы Arduino проект 22:  Датчики газов. Принцип работы, пример работы

В этом эксперименте мы рассмотрим ультразвуковой датчик для измерения расстояния и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. Серия MQ-сенсоров для Ардуино, построены на базе мини-нагревателя внутри и используют электрохимический сенсор. Они чувствительны для определенных диапазонов газов и используются в помещениях при комнатной температуре.  Подробнее ...
 

Arduino проект 21:  Датчик влажности и температуры DHT11 Arduino проект 21:  Датчик влажности и температуры DHT11

В этом эксперименте мы рассмотрим датчик для измерения относительной влажности воздуха и температуры DHT11 и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. Датчик DHT11 состоит из емкостного датчика влажности и термистора. Кроме того, датчик содержит в себе простенький АЦП для преобразования аналоговых значений влажности и температуры.  Подробнее ...
 

Arduino проект 20:  Датчик температуры DS18B20

Arduino проект 20:  Датчик температуры DS18B20


В этом эксперименте мы рассмотрим популярный цифровой датчик температуры DS18B20, работающий по протоколу 1-Wire, и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. DS18B20 – цифровой термометр с программируемым разрешением от 9 до 12 битов, которое может сохраняться в EEPROM-памяти прибора. DS18B20 обменивается данными по шине 1-Wire и при этом может быть как единственным устройством на линии, так и работать в группе. Все процессы на шине управляются центральным микропроцессором.  Подробнее ...
 
Arduino проект 19:  Шаговый двигатель 4-фазный, с управлением на ULN2003 (L293) Arduino проект 19:  Шаговый двигатель 4-фазный, с управлением на ULN2003 (L293)

В этом эксперименте мы рассмотрим подключение к Arduino шагового двигателя. Шаговые двигатели представляют собой электромеханические устройства, задачей которых является преобразование электрических импульсов в перемещение вала двигателя на определенный угол. ШД нашли широкое применение в области, где требуется высокая точность перемещений или скорости.  Подробнее ...
 

Arduino проект 18:  Обрабатываем данные от джойстика. Управление Pan/Tilt Bracket с помощью джойстика Arduino проект 18:  Обрабатываем данные от джойстика. Управление Pan/Tilt Bracket с помощью джойстика

В этом эксперименте мы рассмотрим подключение к Arduino двухосевого аналогового джойстика. Для плат Arduino существуют модули аналогового джойстика, имеющие ось X, Y (потенциометры 10 кОм) и дополнительную кнопку – ось Z. Джойстик позволяет плавно и точно отслеживать степень отклонения от нулевой точки. Сам джойстик подпружиненный, поэтому он будет возвращаться в центральное состояние после его отпускания из определенной позиции.  Подробнее ...
 

Arduino проект 17:  Сервопривод. Крутим потенциометр, меняем положение Arduino проект 17:  Сервопривод. Крутим потенциометр, меняем положение

Сервопривод управляется с помощью импульсов переменной длительности. Угол поворота определяется длительностью импульса, который подается по сигнальному проводу. Это называется широтно-импульсной модуляцией. Сервопривод ожидает импульса каждые 20 мс. Длительность импульса определяет, насколько далеко должен поворачиваться мотор.  Подробнее ...
 

Arduino проект 16:  Графический индикатор. Подключение дисплея Nokia 5110 Arduino проект 16:  Графический индикатор. Подключение дисплея Nokia 5110

В этом эксперименте мы рассмотрим графический дисплей Nokia 5110, который можно использовать в проектах Arduino для вывода графической информации. Жидкокристаллический дисплей Nokia 5110 – монохромный дисплей с разрешением 84×48 на контроллере PCD8544, предназначен для вывода графической и текстовой информации. Питание дисплея должно лежать в пределах 2.7–3.3 В (максимум 3.3 В, при подаче 5 В на вывод VCC дисплей может выйти из строя). Но выводы контроллера толерантны к +5 В, поэтому их можно напрямую подключать к входам Arduino. Немаловажный момент – низкое потребление, что позволяет питать дисплей от платы Arduino без внешнего источника питания.  Подробнее ...
 

Arduino проект 15:  Индикатор LCD1602. Принцип подключения, вывод информации на него

Arduino проект 15:  Индикатор LCD1602. Принцип подключения, вывод информации на него


В этом эксперименте мы познакомимся с жидкокристаллическими индикаторами Winstar для вывода символьной информации. Научимся в Arduino-проектах применять библиотеки и создадим проект вывода показаний датчика температуры LM335 на экран дисплея. Жидкокристаллические индикаторы (ЖКИ, англ. LCD) являются удобным и недорогим средством для отображения данных ваших проектов. Символьный индикатор Wh2602 позволяет выводить на экран 2 строки по 16 символов (размером 5×7 или 5×10 и дополнительная строка под курсор). Управляет работой дисплея контроллер.  Подробнее ...
 
Arduino проект 14:  Датчик температуры аналоговый LM335. Принцип работы, пример работы Arduino проект 14:  Датчик температуры аналоговый LM335. Принцип работы, пример работы

В этом эксперименте мы познакомимся с аналоговым датчиком для измерения температуры LM335. LM335 – это недорогой температурный чувствительный элемент с диапазоном от –40 °C до +100 °C и точностью в 1 °C. По принципу действия датчик LM335 представляет собой стабилитрон, у которого напряжение стабилизации зависит от температуры.  Подробнее ...
 

Arduino проект 13:  Фоторезистор. Обрабатываем освещённость, зажигая или гася светодиоды Arduino проект 13:  Фоторезистор. Обрабатываем освещённость, зажигая или гася светодиоды

В этом эксперименте мы познакомимся с аналоговым датчиком для измерения освещенности – фоторезистором. Распространённое использование фоторезистора – измерение освещённости. В темноте его сопротивление довольно велико. Когда на фоторезистор попадает свет, сопротивление падает пропорционально освещенности.  Подробнее ...
 

Arduino проект 12:  Управляем реле через транзистор Arduino проект 12:  Управляем реле через транзистор

В этом эксперименте мы познакомимся с реле, с помощью которого с Arduino можно управлять мощной нагрузкой не только постоянного, но и переменного тока. При подключении реле к Arduino контакт микроконтроллера не может обеспечить мощность, необходимую для нормальной работы катушки. Поэтому следует усилить ток – поставить транзистор. Для усиления удобнее применять n-p-n-транзистор.  Подробнее ...
 

Arduino проект 11:  Транзистор MOSFET. Показываем усилительные качества транзистора. На примере электродвигателя изменяем обороты Arduino проект 11:  Транзистор MOSFET. Показываем усилительные качества транзистора. На примере электродвигателя изменяем обороты

В этом эксперименте мы познакомимся с транзистором MOSFET и с помощью него будем управлять мощной нагрузкой – электродвигателем. Выводы Arduino, сконфигурированные как OUTPUT, находятся в низкоимпедансном состоянии и могут отдавать 40 мА в нагрузку и не в состоянии обеспечить питание мощной нагрузки и большого напряжения. Одним из способов управления мощной нагрузкой является использование полевых MOSFET-транзисторов.  Подробнее ...
 

Arduino проект 10:  Управляем пьезоизлучателем: меняем тон, длительность, играем музыку Arduino проект 10:  Управляем пьезоизлучателем: меняем тон, длительность, играем музыку

В этом эксперименте мы произведем генерацию звуков на Arduino c помощью пьзоизлучателя. Пьезоизлучатели бывают двух типов – со встроенным генератором и без. Пьезоизлучатели со встроенным генератором излучают фиксированный тональный сигнал сразу после подачи на них номинального напряжения. Они не могут воспроизводить произвольного сигнала.  Подробнее ...
 

Arduino проект 9:  Матрица светодиодная 8x8 Arduino проект 9:  Матрица светодиодная 8x8

В этом эксперименте мы рассмотрим каскадное подключение нескольких микросхем 74HC595, что позволит, используя 3 вывода Arduino, управлять множеством контактов, что будет продемонстрировано в примере вывода фигур на экран светодиодной матрицы 8×8. В эксперименте будем использовать двухцветную светодиодную матрицу FYM-23881BUG-11.  Подробнее ...
 

Arduino проект 8:  Микросхема сдвигового регистра 74НС595. Управляем матрицей из 4 разрядов, экономим выходы Arduino

Arduino проект 8:  Микросхема сдвигового регистра 74НС595. Управляем матрицей из 4 разрядов, экономим выходы Arduino


В этом эксперименте мы рассмотрим работу Arduino с микросхемой 74HC595 – расширителем выходов, позволяющей уменьшить количество выводов Arduino для управления 4-разрядной семисегментной матрицей. Цифровых выводов Arduino Nano и UNO, а иногда даже и Arduino Mega может не хватить, если требуется управлять большим количеством выводов. В этом случае можно использовать микросхему 74HC595.  Подробнее ...
 
Arduino проект 8:  Микросхема сдвигового регистра 74НС595. Управляем матрицей из 4 разрядов, экономим выходы Arduino Arduino проект 7: Матрица 4-разрядная из 7-сегментных индикаторов. Делаем динамическую индикацию

В этом эксперименте мы рассмотрим работу Arduino с 4-разрядной семисегментной матрицей. Получим представление о динамической индикации, позволяющей использовать одни выводы Arduino при выводе информации на несколько семисегментных индикаторов. Предназначена для одновременного вывода на матрицу 4 цифр, также есть возможность вывода десятичной точки.  Подробнее ...
 

Arduino проект 6:  Семисегментный индикатор одноразрядный. Выводим цифры

Arduino проект 6:  Семисегментный индикатор одноразрядный. Выводим цифры


В этом эксперименте мы рассмотрим работу с семисегментным светодиодным индикатором, которая позволяет Arduino визуализировать цифры. Светодиодный семисегментный индикатор представляет собой группу светодиодов, расположенных в определенном порядке и объединенных конструктивно. Светодиодные контакты промаркированы метками от a до g (и дополнительно dp – для отображения десятичной точки), и один общий вывод, который определяет тип подключения индикатора (схема с общим анодом ОА, или общим катодом ОК).  Подробнее ...
 
Arduino проект 5: RGB-светодиод. Широтно-импульсная модуляция. Переливаемся цветами радуги

Arduino проект 5: RGB-светодиод. Широтно-импульсная модуляция. Переливаемся цветами радуги


В этом эксперименте мы рассмотрим широтно-импульсную модуляцию, которая позволяет Arduino выводить аналоговые данные на цифровые выводы, и применим эти знания для создания прозвольных цветов свечения с помощью RGB-светодиода.  Подробнее ...
 
Arduino проект 4: Светодиодная шкала 10 сегментов. Вращением потенциометра меняем количество светящихся светодиодов

Arduino проект 4: Светодиодная шкала 10 сегментов. Вращением потенциометра меняем количество светящихся светодиодов


В этом эксперименте мы рассмотрим работу аналоговых входов Arduino, работу потенциометра в качестве аналогового датчика и будем демонстрировать показания аналогового датчика с помощью светодиодной шкалы. ля получения аналоговых данных Arduino имеет аналоговые входы, оснащенные 10-разрядным аналого-цифровым преобразователем для аналоговых преобразований.  Подробнее ...
 
Arduino проект 4: Светодиодная шкала 10 сегментов. Вращением потенциометра меняем количество светящихся светодиодов Arduino проект 3: Потенциометр. Показываем закон Ома на примере яркости светодиода

В этом эксперименте мы познакомимся с потенциометром и будем управлять яркостью светодиода и изменением сопротивления потенциометра. Сейчас мы рассмотрим, как подобрать ограничительный резистор и как будет влиять номинал резистора на яркость светодиода.  Подробнее ...
 

Arduino проект 2: Обрабатываем нажатие кнопки на примере зажигания светодиода. Боремся с дребезгом контактов Arduino проект 2: Обрабатываем нажатие кнопки на примере зажигания светодиода. Боремся с дребезгом контактов

Это эксперимент по работе с кнопкой. Мы будем включать светодиод по нажатии кнопки и выключать по отпускании кнопки. Рассмотрим понятие дребезга и программные методы его устранения. При использовании Arduino в качестве входов используют pull-up- и pulldown-резисторы, чтобы вход Arduino не находился в «подвешенном» состоянии (в этом состоянии он будет собирать внешние наводки и принимать произвольные значения), а имел заранее известное состояние (0 или 1).  Подробнее ...
 

Arduino проект 1:  Мигаем светодиодом Arduino проект 1:  Мигаем светодиодом

В этом эксперименте мы научимся управлять светодиодом. Заставим его мигать. Светодиод – это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. По-английски светодиод называется light emitting diode, или LED.  Подробнее ...
 

Author:

Отправить ответ

avatar
  Подписаться  
Уведомление о