Схема ограничителя тока к любому зарядному устройству
В любом самодельном зарядном устройстве, выполненным для заряда автомобильного аккумулятора, должен быть ограничитель тока и стабилизация.
Такое дополнение нужно нам для выставления любого тока заряда. В этой статье я расскажу вам, как сделать это простое дополнение, вернее схему к любому зарядному устройству, схема проверенная, отлично работает со всеми зарядными устройствами.
Схема блока довольно простая и собрана всего на одном операционном усилителе. ЗУ должно отдавать ток до 10 ампер и работать в диапазоне напряжений от 13,5 до 14,5 Вольт.
Силовым элементом данной схемы является один полевой транзистор, через который будет проходить весь ток, поэтому его нужно устанавливать на радиатор. Экспериментально сначала схему я собирал на макетной плате…В схеме желательно использовать полевые транзисторы с током от 40 ампер, но подойдёт и с током от 20 ампер.
В нашей схеме отлично зарекомендовали себя такие транзисторы как IRFZ44, IRFZ46, IRFZ48, IRF3205 и аналогичные.Я использовал шунт от китайского мультиметра он даёт довольно точные замеры при токах 10-14 ампер. Вы можете использовать другие шунты например низкоомный резистор или что-то подобное.
Транзистор так же можно заменить на биполярный, если брать наши транзисторы, то отлично подходят такие как КТ8101 или КТ819ГМ, но также не забудьте поставить их на радиатор. Операционный усилитель я взял ЛМ358, сдвоенный, но как показала практика можно взять и одиночный к примеру TLO71 или TL081.Всё остальное делается, как обычно, я думаю, что в остальном никаких вопросов возникнуть не должно. Приставка к зарядному устройству работает сразу и не требует никаких настроек.Автор: Ака Касьян
Ограничение зарядного тока конденсаторной батареи
Известные схемы ограничения зарядного тока конденсаторов или слишком сложные [1], или маломощные [2], или уменьшают КПД установки [3], или, имея в своем составе дополнительные элементы коммутации, требуют определенного алгоритма включения устройства.
Предлагаемый вариант ограничителя зарядного тока хотя и не отличается дешевизной и требует подбора элементов при наладке, но очень надежен и допускает даже очень кратковременное пропадание напряжения сети (так называемая «просадка») и защищает аппаратуру от серии «просадок», что является притчей во языцех для силовой электроники.
Источник кратковременного сверхтока для проверки защитных устройств показан на фото в начале статьи.
Простой ограничитель зарядного тока
Схема, изображенная на рис.1 состоит из маломощного реле К1, контактора К2, резистора R1, ограничивающего зарядный ток батареи конденсаторов С1…Сn, величина резистора R2 определяет величину тока включения реле К1, а, следовательно, и напряжение, до которого успеют зарядится конденсаторы батареи, перед включением контактора К2, для минимизации броска тока. Резистор R3, подключаемый после срабатывания реле и контактора, уменьшает рабочий ток через реле и уменьшает разницу напряжений срабатывания и отпускания реле.
Рис. 1
Рис. 2
Рис. 3
С целью уменьшения мощности (и размеров) резисторов R2 и R3 желательно подобрать очень чувствительное реле с минимальным ток срабатывания. Среди реле встречаются экземпляры с током срабатывания меньше 5 мА, например, типа РЭС-54 с напряжением срабатывания 24 В (рис.4,а) или типа MY4 с напряжением срабатывания 230 В (рис.4,6).
Рис. 4
Используя силовой геркон (так называемый герсикон, рис.5,а), намотав на него несколько тысяч витков тонкого провода (рис.5,б, рис.5,в), можно добиться тока срабатывания меньше 3 мА. Следует напомнить, что обычные (малогабаритные) герконы не рассчитаны на работу с напряжением питающей сети 230 В / 50 Гц, и использовать их в данных условиях не допустимо.
Рис. 5
Резистор R1 можно заменить малогабаритной лампой накаливания на напряжение 230 В (например, галогенной, рис.2), предусмотрев пожаробезопасное крепление. В таком случае даже длительное короткое замыкание не вызовет необратимых процессов в устройстве, а лампа будет сигнализировать о «форс-мажорных» обстоятельствах. UR1 на рис.2 — это варистор, еще значительней уменьшающий разницу напряжения срабатывания и отпускания реле К1. Элементы С1, С2 и L1 на рис.2 — входной помехоподавляющий фильтр.
Если в качестве токоограничительного элемента применить две последовательно включенные лампы (рис.3), то надежность схемы увеличится, а температура внутри корпуса (при аварии) — уменьшится. К тому же, в таком случае можно использовать дешевые малогабаритные китайские «ква- зигалогенки».
Некоторые «креативные» фирмы, выпускающие трехфазные контакторы, «забывают» устанавливать блок-контакты (автор встречал контакторы фирмы Siemens, на которых даже не предусмотрено место для «пристегивания» блок-контактных мостиков). В таком случае коммутация дополнительного резистора R3 производится дополнительной группой самого реле К1 (рис.2), т.е. К1 должно иметь две группы переключательных контактов (или одну Н.О. группу и одну Н.З. группу контактов). Но в этом случае, при наладке схемы, необходимо убедиться в адекватном срабатывании реле при достаточно медленном нарастании напряжения, т.к. возможна ситуация, когда реле будет «строчить», а контактор не включится. Спровоцировать (на время наладки) медленное нарастание напряжения можно преднамеренным увеличением сопротивления R1.
Ограничитель зарядного тока для преобразователей частоты
Для устройств, питающихся от однофазной сети, еще одной проблемой является низкое напряжение звена постоянного тока — не более 320 В, что недостаточно для питания преобразователей частоты (ПЧ), особенно, если нужно получить выходную частоту ПЧ более 50 Гц. Как известно, чтобы не терять вращающий момент на валу двигателя, вместе с увеличением частоты, требуется линейное увеличение напряжения питания двигателя. Для синхронной частоты вращения асинхронного двигателя 6000 об./мин (100 Гц), требуется линейное напряжение 760 В (для двигателя 3×380 В). Получить подобное напряжение позволяет схема удвоителя сетевого напряжения, изображенная на рис.3. Контролировать с помощью реле нужно, именно, удвоенное выпрямленное напряжение сети, т.к. в противном случае есть опасность «не заметить» сбой электроснабжения или нарушение в схеме устройства.
При отсутствии варистора в схеме рис.3 резисторы R1 и R2 должны быть увеличены (в зависимости от чувствительности реле К1) до 100…130 кОм, а R1 желательно сделать составным (для распределения высокого напряжения). В схеме достаточно легко можно организовать любые виды защит посредством датчиков (SF1, SF2, SK1), отключающих или закорачивающих реле К1 (рис.3). Стабилитрон VD3 ограничивает напряжение на катушке реле К1 и на контактах датчиков. Датчики могут быть температурными, токовыми, давления, напряжения и прочее. Замыкающий контакт датчика предпочтительней размыкающему (например, датчику температуры SK1 на рис.3) — в этом случае не нагружается стабилитрон VD3 и последнему не требуется радиатор.
Ограничитель зарядного тока для инверторного блока питания
Если разрабатываемое (или модернизируемое) устройство не является преобразователем частоты или сварочным инвертором, а, к примеру, это мощный инверторный блок питания, запускаемый без нагрузки, или с минимальной нагрузкой (для, допустим, металлообрабатывающего комплекса), то К1 можно запитать от вторичного источника блока питания (рис.6). Во время работы, если кратковременно исчезнет напряжение сети, то контактор К2 отключится самостоятельно, а К1 проконтролирует напряжение батареи конденсаторов косвенно и, в случае, значительного падения напряжения не позволит К2 включиться до окончания повторного подзаряда батареи.
Рис. 6
Ограничитель зарядного тока с твердотельными контакторами
Используя современную материальную базу электроники, очень перспективными в этой теме выглядят т.н. твердотельные реле и контакторы (SSR, SSC, рис.4,в) — один такой элемент может заменить несколько других (рис.7). Кроме экономии места и упрощения схемы, эти элементы сами могут несколько ограничивать зарядный ток, т.к. имеют встроенную функцию коммутации при переходе тока через нуль (Zero Switching). Недостаток таких твердотельных контакторов — это падение напряжения на них зависящее от тока нагрузки, зато они имею значительно большую надежность чем электромагнитные контакторы.
Рис. 7
Литература:
- А. Фролов // Радио. — 2001. — №12. — С.38.
- А. Зызюк // РадиоАматор. — 2007. — №01. — С.ОЗ.
- Э. Мурадханян // Радио. — 2004. — №10. — С.35.
Автор: Александр Шуфотинский, г. Кривой Рог
Источник: Электрик №12, 2016
Самое простое, но самое правильное зарядное устройство
Впервые столкнувшись с необходимостью реанимации уже мертвых аккумуляторов, я решил изучить вопрос и задаться целью «впихнуть невпихуемое», т.е. выжать из приготовленных на выброс АКБ последнее. Вопрос этот встал в середине 90х — в то время самыми распространенными и используемыми были кислотные, щелочные, никель-кадмиевые и никель-металлгидридные аккумуляторы.
Сразу скажу, что штатные ЗУ, предназначенные для зарядки разных АКБ уже не справлялись: одни уже в начале цикла говорили, что ничего нельзя сделать, а другие честно проходили цикл, но АКБ свою емкость так и не набирала даже на 10%.
Итак, есть два способа зарядки от источника постоянного тока: постоянным (во времени) током или постоянным (во времени) напряжением. Однако, в любом случае отмечается нагрев пациента и закипание (если электролит жидкий). Опуская всякие детали, перейду к тому, что же я вывел для себя.
А получается вот что: заряжать аккумуляторы нужно не только импульсами, а еще и разряжать в паузах между импульсами заряда. Но что еще важнее — импульсы постоянного тока также не очень благоприятны. В итоге родилось вот такое устройство:
Плюс аккумулятора по схеме сверху.
Это решение позволяет заряжать аккумулятор, а также разряжать в паузах длиной в полу-период.
R1 — регулируется общий ток, который составляет 10% от емкости АКБ+Jразр, т.е.Jобщ=Jзар+Jразр.
R2 — рассчитывается так, чтоб через него в паузах разряда шел ток Jразр в 10 раз меньший, чем ток заряда. Я для этой цели использую и лампы накаливания, если токи заряда велики.
Например, если емкость АКБ 55Ач, то зарядный ток нужно поддерживать на всем протяжении заряда равным Jзар=5.5+0.55=6.1А.
Первый опыт был настолько многообещающим, что я не мог поверить.
1. Щелочной брикет 10-НКГЦ-10 был настолько мертв, что родное армейское полностью автоматическое ЗУ вообще отказывалось заряжать. Этим устройством я зарядил так, что до сих пор (с 1995 года) пользуюсь этой батареей (естественно, заряжая, при необходимости). Пусть и изредка.
2. Шахтерский фонарь выпуска 1992 года, проведший в разряженном состоянии на балконе друга несколько лет (с нашими-то зимами). На момент вручения его мне в 1997 году он вообще признаков жизни не подавал. А ведь я его до сих пор использую на рыбалке 😉
3. Аккумулятор в первом автомобиле был при покупке забракован продавцом (UA9CDV) и был крайне рекомендован к смене первой же зимой, т.к. «намаялся он с ним»… А ведь я поездил на авто несколько лет и до сих пор на нем ездит уже третий владелец. Авто 1993 года.
4. Аккумулятор видеокамеры друга в 2000 году не держал уже даже 5 минут. После «правильной» процедуры он заставлял работать видеокамеру в течение 1 часа, хотя по паспорту она всего 45 минут могла непрерывно работать и длительней у него никогда не получалось.
Более перечислять не буду, ибо страница станет навязчивой.
При этом, нужно отметить, что аккумуляторы не «кипели» как при родных зарядниках и не грелись столь сильно.
Правила пользования:
1. Подключить R2 к аккумулятору.
2. Резистором R2 установить разрядный ток 1/10 от необходимого зарядного тока. Будьте бдительны: если аккумулятор не подает признаков жизни, с подбором этого резистора можно ошибиться существенно. Сможете скорректировать его позже.
3. Подключить ЗУ к аккумулятору. Резистором R1 установить зарядный ток Jзар=1/10 от емкости АКБ
4. Скорректировать R2 и R1 минут через 20 после начала заряда.
5. В течение зарядки вручную поддерживать ток заряда постоянным во времени. Это требование желательное, но сколько себя помню — ни разу его не соблюдал 😛 Поэтому ток заряда изначально ставил больше, т.к. он неизбежно снизится существенно (зависит от состояния АКБ).
6. При таких условиях, заряжать любой аккумулятор (из перечисленных в начале) нужно 14-16 часов.
Примите во внимание, что эффект от такой зарядки на современных, т.н. «кальцинированных» АКБ не будет столь высоким. Более того, у меня сложилось впечатление, что их специально делают явно одноразовыми. Посудите сами: автомобильные аккумуляторы работают не более 3 лет! Данная процедура не восстанавливает их столь же явно и еще через год приходит понимание, что их маркетологи с технологами свой хлеб отработали — аккумуляторы приходится менять! Некальцинированные аккумуляторы могли и 10 лет «ходить» в умелых руках. Между строк читайте «с данной схемой зарядки» 🙂
Различают несколько основных типов свинцово-кислотных АКБ:
Wet Standard (Sb/Sb)
Wet Low Maintenance (Sb/Ca)
Wet «Maintenance Free» (Ca/Ca)
И только в первом типе возможна т.н. десульфатация. В остальных типах процесс сульфатации необратим.
В случае с Li-on и Li-Pol аккумуляторами вопрос решается гораздо сложнее: с применением зарядных процессоров и прочей обвязки, однако, у них нет памяти, поэтому есть вариант обойти различные хитрости. Но их заряжать ассиметричным током не рекомендую (лучше постоянным). Хотя и делал это неоднократно))
С учетом такого опыта, я сделал в источнике питания трансивера третью клемму, на которую подал через диод питание с трансформатора. Теперь, подключая аккумулятор к этой клемме и к минусовому выводу, я заряжаю все свои старые аккумуляторы на протяжении уже более 10 лет. Тем более, что и ток выходит знатный!
А вот видеокурс от пользователя Владимир Коротеев, повторившего данный способ:
30.09.2010
Простое зарядное для автомобильного аккумулятора
Данное зарядное устройство имеет минимум деталей: понижающий трансформатор, параллельно включенные лампочки, тумблера (включатели), диодный мост и 2-а предохранителя. Я буду ориентироваться что читатель совсем не разбирается на достаточном уровне в электротехнике и буду пытаться подробно рассказать что, как и зачем. И так, вот схема приведена такого устройства ниже:
В самом начале вам нужно будет найти силовой понижающий трансформатор на напряжение 14,5 вольт. Почему 14,5 вольт? Потому что заряжая аккумулятор 12 вольт ему будет не достаточно 12 вольт, т.к. полностью заряженный аккумулятор будет считаться 13-14 вольт. Трансформатор должен быть достаточно мощным, где то 250 ват, не меньше. Ну если конечно вы планируете заряжать аккумулятор током в 1-3 Ампера, то трансформатор можно взять на 150 ват со старого лампового телека – он подойдет. При работе схемы следите за нагревом трансформатора, так как при большом токе заряда вторичная обмотка начинает греться. Если обмотка перегреется, то изолирующий лак на проволоке расплавиться и трансформатор перестанет работать, так как произойдет межвитковое замыкание. Или будет работать не корректно, то есть может уменьшиться напряжение. Предохранитель в цепи служит защитой от случайного короткого замыкания. Ведь бывает такое. Теперь стоит сказать о лампочках: чем больше мощность лампы, тем выше ток заряда будет. Приведена таблица ниже по току и мощностям лампочек:
Ток рассчитывается по закону Ома. ФОРМУЛА: Ток = мощность/напряжение. Ведь лампочка – это как сопротивление, только оно излучает еще и свет. В качестве сопротивления в лампе такой элемент, как нить накаливания, сделанная из вольфрама. При этом лампочка в данном случае служит еще не только как сопротивление, но и как индикатор заряда. Когда аккумулятор начинает заряжаться, то лампочка начинает светится более тускло. Когда аккумулятор будет заряжен, то лампочка будет светится в пол накала. Все лампочки соединены параллельно для удобства управления током заряда. Вот формула чтобы определить общее сопротивление 2-ух параллельно соединенных сопротивлений (лампочек): Сопротивление общ.= (сопротивление первой лампочки + сопротивление второй лампочки)/2. Теперь находим ток: Ток= напряжение/ сопротивление общ. . Сопротивление у лампочки можно померить с помощью мультиметра, настроив его на омметр или обычны омметром. То есть, когда все ключи будут замкнуты, то ток будет проходить максимальный. Ключ (тумблера) ставим на токи 3-5 ампер.
Теперь перейдем к диодному мосту, который выпрямляет переменный ток в постоянный. Диодный мостик наш должен быть обязательно рассчитан на ток зарядки. Если ток зарядки у нас 10 Ампер, то диодный мост должен быть на ток не меньше 10А ну и соответственно на напряжение тоже должен быть рассчитан. Диодный мост можно купить на радиорынке. Или собираем диодный мост из диодов и диоды ставим любые, но чтобы соответствовали току и напряжению. Тут в этой схеме можно даже использовать одно полупериудный выпрямитель (для экономии диодов), тут 4 диода в принципе ни к чему. Аккумулятору без разницы с какими пульсациями будет поступать ток зарядки. Одно полупериудный выпрямитель – это то есть устанавливаем один диод в разрыв любой из линий на 10-15 Ампер. Далее следует поставить предохранитель, который защитит вашу цепь от короткого замыкания. И в итоге можно подключать аккумулятор к зарядке. Для контроля тока рекомендую установить амперметр в разрыв цепи. И тогда переключая лампочки, мы сможем увидеть реальный ток заряда аккумулятора. При зарядке мы будем наблюдать, как лампочки будут постепенно тухнуть – это будет считаться, что аккумулятор заряжается. Учтите, что при включении каждой паралельно включенной лампочки ток примерно возрастает на 1,6 Ампера.
Так же, рекомендую установить параллельно в цепь светодиод с последовательно включенным резистором. Светодиод будет сигнализировать о включенном зарядном. Резистор будет служить в качестве ограничителя тока, значит, мы можем регулировать яркость светодиода, изменяя сопротивление резистора. Резистор последовательно соединенный с светодиодов включаем параллельно в цепь первичной обмотки трансформатора . Резистор брать порядка 220 кОм, ведь 220 вольт все-таки… В простом варианте заражать аккумулятор емкостью 60 Ампер/час можно без тумблеров через одну лампочку в 60 ват. Можно взять 3 лампочки по 20 ват и соединить последовательно – то же самое выйдет, или взять две лампочки по 120 ват и соединить параллельно – выйдет так же 60 ватт. Теперь немного о зарядке. Если вы включили две лампочки и оди достаточно так светятся ярко, то аккумулятор полностью разряжен. Нужно аккумулятор зарядить до тех пор, пока не начнут лампочки гореть тускло. Как только лампочки начали светится тускло, то включаем еще один тумблер и у нас ток возрастает на 1,6 Ампера. Лампочки при этом начинают все три светиться ярче, так как сопротивление стало меньше по закону ома. И так включаем до конца.
Все устройство готово. Это самое простое зарядное устройство, которое есть вообще. Но помните, что это фактически самое простое зарядное и в нем нету защиты от перезаряда и прочих выкрунтасов, так что вам постоянно требуется следить за нагревом элементов. Обязательно следите за показанием цифр на амперметре, следите за аккумулятором и напряжением на аккумуляторе, следите за диодным мостом чтобы не грелся и слегка посматривайте за трансформатором (тоже может греться). Если диодный мост греется, то установите на диодный мост радиатор (теплоотвод). При этом очень хорошо будет помазать термопастой теплоотвод и сам диодный мост, а потом плотно прижать. Ведь через пасту диоду будет легде отдавать тепло радиатору, что спасет жизнь диодного мостика. ))) Если у вас установлен диод или диоды, то есть специальные радиаторы такие полоской под диоды. Их просто прикручиваем болтами и все.
И напоследок
А мой совет, если у вас есть знания в области электроники и элекротехники, то лучше соберите импульсное зарядное устройство с защитой от короткого замыкания, перегрузок, переплюсовки, перезаряда, не дозаряда схему – она будет на много надежней данной представленной. Ведь если в данной схеме попутать плюс с минусом и поставить заряжать, то вы рискуете выкинуть этот аккумулятор.