Простой однотактный усилитель Зена на полевых транзисторах
Нельсон Пасс — классический вариант однотактника, работающего в режиме А, от идеолога технологии Zen.
Пример однотактного лампового усилителя иллюстрирует ограниченность измерений в описании музыкальности аудиокомпонентов. Все подобные усилители обладают до смешного плохими техническими параметрами: у них большие нелинейные искажения, абсурдно низкая выходная мощность (чаще всего, менее 10 Вт на канал), не с любой акустической системой они способны нормально работать. И тем не менее, однотактный усилитель обладает такой непосредственностью в общении с музыкой, в которую можно поверить, только услышав»
(Роберт Харли, Энциклопедия High-End Audio, 2000).
Итак, стартуем. Тема сегодняшней нашей передовицы — транзисторные однотактные усилители, естественным образом, работающие в режиме чистого класса А.
И начнём мы знакомство с транзисторными однотактниками с конструкции Нельсона Пасса (Nelson Pass) — главного идеолога УМЗЧ по технолошии Zen (далее усилители Зена), а по совместительству — руководителя лаборатории «Pass Labs».
Во всей линейке транзисторных усилителей Нельсона Пасса данная реализация является одной из самых первых и, по мнению многих любителей однотактного лампового звука — наиболее приближённо повторяет звучание вакуумных одноклассников.
«Наша цель — не ракетостроение; наша цель сделать аппаратуру для прослушивания музыки. Если мы применим такой подход, называя его
искусством, а не наукой — то это будет прекрасно.
Насколько простую схему мы можем сделать, чтобы она хорошо работала? Очевидно, усилитель с одной ступенью усиления будет самым простым.
А как мы сможем получить качественный звук от однокаскадного усилителя? Есть единственное простейшее решение: однотактный усилитель, работающий в классе А », — написал в преамбуле своей статьи уважаемый идеолог усилителей Зена.
Приведу схему со страницы сайта автора
 https://www.passdiy.com/project/amplifiers/the-zen-amplifier и
многочисленное количество раз перерисованную на полях интернета.
Рис.1
Важно!!! Уважаемый автор, а вместе с ним и многочисленные «копировальщики» забыли указать на схеме жизненно необходимую деталюшку — антипаразитный резистор в цепи затвора R11.
Данный резистор следует подпаивать непосредственно к выводу транзистора (либо на расстоянии от затвора, не превышающем 5мм). В противном случае при значительном токе покоя полевика, необходимом для его работы в режиме А, практически со 100% вероятностью к полезному выходному сигналу приклеится паразитный, с частотой 15…18 МГц, который низкочастотным осциллографом ещё и хрен зафиксируешь. Результат — повышенные динамические и интермодуляционные искажения и комментарии на форумах типа: «А я спаял усилитель, а звучание чего-то не впечатлило».А теперь описание от автора.
На Рис.1 показана полная схема усилителя.
На VT3 собран каскад усиления, на транзисторе VT2 — источник тока. Узел на транзисторе VT1 служит для регулировки режима транзистора VT2,
а цепь R2R3С1 — для фильтрации пульсаций питания.
Ток, проходящий через VT2, вызывает падение напряжения на R2, и когда оно достигнет 0,66 В, транзистор VT1 начнёт открываться, что ограничит напряжение затвор-исток VT2 примерно на уровне 4 Вольт. Равновесие наступит при постоянном токе через VT2 около 2А.
Антипаразитные резисторы R4 и R5 улучшают стабильность петли регулировки и предотвращают паразитные колебания тока через транзистор VT2. Этот же постоянный ток 2 А будет протекать и через транзистор VT3. Резистор R8 и потенциометр R9 создают цепь обратной связи по постоянному току, которая управляет затвором VT3, поддерживая напряжение на нём около 4 В и позволяя установить напряжение на стоке VT2 равным половине напряжения питания (около 17 В).
Входной сигнал через R7 и С2 поступает на затвор VT3, а выходной проходит через С3 на громкоговоритель. Резисторы R1 и R10 служат для разрядки конденсаторов С2 и С3. Стабилитрон VD1 защищает затвор VT3 от вероятных высоковольтных помех, возникающих в моменты переходных процессов.
Рис.2
На Рис.2 показан рисунок печатной платы двух каналов усилителя. Фольга со стороны монтажа деталей не удалена и используется в качестве экрана.
Основным требованием, предъявляемым к МОП-транзисторам, является способность надёжно непрерывно рассеивать 30 Вт. Это означает, что паспортная мощность транзисторов должна быть не менее 125 Ватт. Транзисторы должны быть рассчитаны на напряжение не менее 50 В, и я полагаю, что их максимальный постоянный ток должен быть 10 А или более. Я выбрал транзисторы фирмы International Rectifier.
Крайне важным элементом является радиатор. Для каждого канала он должен обеспечить непрерывный отвод 70 Вт тепла при температуре
окружающей среды 25 градусов по Цельсию. Менее эффективный теплоотвод сократит срок службы МОП-транзисторов.
Силовой трансформатор должен обеспечить переменное напряжение около 25 В при токе 6 А для каждого канала. Ёмкость электролитического конденсатора, следующего после диодного моста — 22000 МкФ. Хотя фактическое потребление постоянного тока составляет ровно 2 А на канал, фактор мощности, создаваемый зарядкой конденсаторов блока питания, приводит к большему рассеянию мощности трансформатора, чем предполагалось, исходя из 2 ампер. В моей реализации силовой трансформатор имеет 2 отдельные вторичные обмотки для каждого канала, однако приемлемо запитывать оба канала от одной — общей.
Настройка усилителя Pass ZEN.
После того, как вы закончили сборку усилителя, подключите его через предохранитель к источнику питания. Если предохранитель питания не сгорит, вы должны будете установить напряжение около 0,66 В на резисторе R6, а постоянное напряжение на стоке VT3 — около 17 В. Подключив эквивалент нагрузки 8 Ом и подав на вход сигнал, с помощью потенциометра R9 добейтесь симметричного ограничения выходного сигнала. Проведите повторную регулировку после того, как усилитель полностью прогрелся.
Выходной импеданс усилителя составляет приблизительно 1 Ом с коэффициентом демпфирования около 8.
Не все громкоговорители подходят для однотактных устройств, потому что им нужен: либо более высокий коэффициент демпфирования,
либо их импеданс ниже 8 Ом, либо для их нормальной работы требуется больше 10-ти ватт.
Однако существует довольно много динамиков с импедансом 8-16 Ом и чувствительностью в диапазоне 90-100 дБ, которые вполне подходят для
данного усилителя.
Входной импеданс составляет 4,75 кОм, а усиление — около 8,5 дБ. Это означает, что усилитель должен работать от активного источника, способного выдавать на выходе 3,5 вольт и иметь выходное сопротивление — не более 470 Ом.
Так как это звучит? С правильным динамиком — просто замечательно!
Нельсон Пасс, 1994.
Впоследствии описанный выше усилитель Зена был доработан автором — цепи ООС по постоянному и переменному току были разделены, что позволило
несколько снизить коэффициент гармоник при максимальной мощности. Схема доработанного усилителя приведена на Рис.3.
Рис.3
На этом всё! А на следующих страницах будем знакомиться с другими реализациями однотактных усилителей на полевых транзисторах.
Усилители мощности
Лекция 10
Усилители мощности. Выбор транзисторов
Усилитель мощности является оконечным каскадом, с выхода которого колебание поступает в нагрузку усилителя. Он обеспечивает необходимую интенсивность выходного колебания усилителя и включается в конце его. Все предыдущие каскады по сравнению с оконечным являются маломощными. Именно он определяет КПД всего усилителя, а также требуемые напряжение и мощность источника питания, т.е. в значительной степени определяет стоимость всего устройства и его эксплуатации. Для снижения стоимости, т. е. уменьшения требуемых напряжения и мощности питания усилителя, стараются повысить степень их использования. С этой целью в оконечных каскадах максимальные амплитуды токов и напряжений транзисторов делают близкими к их значениям в исходной РТ или даже больше их. Эти особенности частично присущи и предоконечным каскадам. Назначение последних – обеспечить уровень сигнала, достаточный для управления оконечными каскадами или, как говорят, для их раскачки. Если от оконечного каскада требуется получить заданную выходную мощность, то главным показателем его энергетической эффективности является КПД.
Вследствие большой степени использования напряжения и тока питания в оконечных каскадах сильно проявляется кривизна входных и передаточных характеристик транзисторов, что вызывает значительные нелинейные искажения. Поэтому в процессе проектирования оконечного каскада определяют и его коэффициент гармоник, а расчет ведут графическим методом по характеристикам транзисторов.
Транзисторы любых каскадов выбирают исходя из того, чтобы максимальные токи, напряжения и мощности потерь не превышали допустимых для данного типа транзистора. Одновременно желательно, чтобы частота в оконечных биполярных транзисторов была не ниже верхней граничной частоты усилителя.
Оконечные каскады усиления могут быть однотактными или двухтактными. Простейшими из них являются однотактные.
Однотактные каскады усиления мощности
В однотактном каскаде усиление осуществляется одним транзистором. Если в его выходную цепь нагрузка включается через трансформатор (рис. 1,а), называемый выходным, то каскад называется трансформаторным.
Рис. 1
В трансформаторном каскаде наклон нагрузочной прямой ВС(рис. 1,б) для переменного тока определяется сопротивлением нагрузки транзистора, равным входному сопротивлению трансформатора, нагруженного на сопротивление
,
где – коэффициент трансформации выходного трансформатора, равный отношечшю чисел витков обмоток;– КПД трансформатора. ПрямаяВСпроходит через исходную рабочую точкуА, которая выбирается на нагрузочной прямой для постоянного тока. Последняя проходит вертикально, если сопротивление провода первичной обмотки= 0. В этом случае постоянное напряжение на коллекторе в рабочей точке. Ток коллектора в нейназывается током покоя.
На рис. 1 нанесены также диаграммы мгновенных значений напряжения и тока коллектора при усилении гармонического колебания максимальной амплитуды. Они содержат постоянную и переменную составляющие. Транзистор работает в режиме А. Точки ВиС определяют максимальные границы используемого участка нагрузочной прямой. ТочкаВлежит на границе с состоянием насыщения, а точкаС– на границе с запертым состоянием транзистора.
Напряжение в точке Ви ток в точкеСявляются минимальными и называются остаточными (). Так как при уменьшенииЭДС самоиндукции первичной обмотки складывается с напряжением питания, в некоторые отрезки времени оказывается.
Важным показателем каскада является КПД выходной цепи транзистора . Здесь мощность переменного тока, отдаваемая в нагрузку транзистора #„.т, пропорциональна квадрату амплитуды колебания, а мощность питания его выходной цепине зависит от нее. Поэтому для любого каскада в режиме А
, (1)
где относительная амплитуда колебания .
Найдем . Мощность, причем при отсутствии искажений средний за период ток питания, а если= 0, то. Поэтому. При максимальной амплитуде мощность. Тогда
, (2)
где – максимальные коэффициенты использования напряжения и тока питания транзистора. Оба они меньше единицы из-за остаточных напряжения и тока, а поэтому < 0,5. Обычно и дополнительно уменьшают, принимая пониженную максимальную амплитуду, так как вблизи точекВиСработа транзистора сопровождается большими нелинейными искажениями.
На практике амплитуда усиливаемого колебания редко бывает максимальной. Например, для сигналов звукового вещания в среднем и . Если уровень сигнала уменьшен, например регулятором громкости, тои КПД будут еще ниже. Быстрое падение КПД (8.1) при уменьшении амплитуды обусловлено неизменным средним током питания и присуще всем каскадам в режиме А.
Мощность пропорциональна квадрату амплитуды. Поэтому . Зависимости отмощностейи потерь на коллектореприведены на рис. 2,а. При идеальных транзисторах,и кривыеиприсходятся в одной точке. Мощностьдостигается при, т.е. в режиме покоя, когда вся мощность питания транзистора рассеивается на коллекторе
. (3)
По этому максимально возможному значению рассчитывается радиатор транзистора.
Рис. 2
В маломощных усилителях иногда применяют однотактный оконечный каскад с так называемой динамической нагрузкой в виде токостабилизирующего двухполюсника, выполненного на транзисторе (VT2 на рис. 2,б). Для него в пределе при идеальных транзисторах (не имеющих остаточных напряжений)25 %, т.е. вдвое меньше, чем для трансформаторного каскада.
Усилители мощности
Все рассмотренные нами усилители относятся к категории усилителей напряжения, их основное назначение — получение максимального размаха выходного напряжения. Когда требуется большая выходная мощность, например для «раскачки» мощных громкоговорителей или антенн или питания электродвигателей, применяются усилители мощности. Они характеризуются высоким коэффициентом усиления по мощности, который достигается за счет высоких коэффициентов усиления по напряжению и по току.
|
|
||||
На рис. 30.9 приведена базовая схема выходного транзисторного каскада с эмиттером, заземленным по переменному току. Для получения неискаженного выходного сигнала усилитель должен работать в режиме класса А. КПД такого усилителя мощности очень мал из-за большого тока, потребляемого от источника питания. От этого усилителя можно получить только небольшую мощность. Его можно использовать в автомобильном радиоприемнике, где величина потребляемого тока не имеет значения.
Двухтактный режим работы
Двухтактные выходные каскады почти повсеместно используются в современных транзисторных усилителях. Двухтактный усилитель содержит два транзистора, работающих в режиме классаВ, каждый из которых обеспечивает усиление только одного полупериода входного сигнала.
Двухтактный усилитель с использованием двух идентичных транзисторов
На рис. 30.10 показана упрощенная схема двухтактного усилителя. Эмиттерные переходы транзисторов имеют нулевое напряжение смещения, поэтому каждый из транзисторов проводит ток только в одном из двух чередующихся полупериодов входного сигнала. Входной трансформатор Tp1 с отводом от средней точки вторичной обмотки работает как расщепитель фазы.
Рис. 30.10. Двухтактный усилитель мощности с двумя идентичными транзисторами и трансформаторным расщепителем фазы.
Два равных и противоположных по знаку (противофазных) сигнала формируются в каждом полупериоде на половинах вторичной обмотки этого трансформатора: сигнал Va, находящийся в фазе с входным сигналом, и сигнал Vb, противофазный входному сигналу. В то время как положительный полупериод сигнала Vaсоответствует положительному периоду входного сигнала, положительный полупериод сигнала Vbсоответствует отрицательному полупериоду входного сигнала. Транзисторы T1 и T2 открываются, когда потенциал базы транзистора становится положительным по отношению к потенциалу эмиттера. Таким образом, транзистор T1 открыт в течение положительного полупериода сигнала Va. При этом через него протекает ток i1 от эмиттера к коллектору и далее через верхнюю половину первичной обмотки выходного трансформатора Tp2 к источнику питания VCC. Этот ток создает положительный полупериод выходного сигнала на вторичной обмотке трансформатора Tp2. Транзистор T2 открыт в положительном полупериоде сигнала Vb, при этом ток i2 протекает снизу вверх (в обратном по отношению к току i1 направлении) через нижнюю половину трансформатора Tp2, создавая отрицательный полупериод выходного сигнала на его вторичной обмотке. Выходной трансформатор с отводом от средней точки первичной обмотки объединяет эти два полупериода в один полный период выходного сигнала. Транзисторы T1 и T2 включены по схеме с общим эмиттером и имеют при этом относительно высокое выходное сопротивление. Так как сопротивление нагрузки выходного каскада очень мало, обычно менее 10 Ом в случае громкоговорителя, всегда используется согласующий трансформатор Tp2.
Выходной сигнал двухтактного усилителя с нулевым смещением эмиттерных переходов транзисторов воспроизводится с искажениями типа «ступенька», как показано на рис. 30.10. Эти искажения связаны с нелинейными участками характеристик двух транзисторов. Искажения возникают в те моменты времени, когда один транзистор начинает открываться, а другой — закрываться. Для устранения этих искажений на базы транзисторов подается небольшое напряжение прямого смещения (0,1-0,2 В), как показано на рис. 30.11, где резисторы R1 и R2 образуют общую цепь смещения для обоих транзисторов. Нелинейности двух транзисторов компенсируют друг друга, и на выходе воспроизводится неискаженный сигнал.
Рис. 30.11. Цепь смещения R1 — R2 устраняет искажения типа «ступенька».
Транзисторные фазорасщепители
На рис. 30.12 показана схема фазорасщепителя на транзисторе прп-типа. Резисторы R3 и R4 имеют равные сопротивления, для того чтобы получить на выходе два равных по величине и противоположных по знаку синусоидальных сигнала, снимаемых с эмиттера и коллектора транзистора. Для обеспечения максимальной величины неискаженного выходного сигнала отношение сопротивлений R1 : R2 должно находиться в диапазоне от 2 : 1 до 3 : 1. Типичные значения постоянных напряжений, определяющих режим транзистора по постоянному току, указаны на схеме.
Рис. 30.12. Транзисторный фазорасщепитель.
Двухтактный усилитель на комплементарных транзисторах
Двухтактный усилитель мощности на комплементарных транзисторах позволяет отказаться от использования как фазорасщепителя на входе, так и трансформатора на выходе. В этом усилителе используются два симметричных транзистора, рпр- и npn-типа, называемые комплементарной парой. Принцип его работы основан на том факте, что положительный сигнал открывает прп-транзистор, а отрицательный сигнал — рпр-транзистор. На рис. 30.13 приведена базовая схема двухтактного усилителя на комплементарных транзисторах (иногда называемая каскадом с дополнительной симметрией). Транзисторы T1 и T2 работают в режиме класса В, т. е. в точке отсечки. Используются два источника питания: +VCC и –VCC. В положительном полупериоде входного сигнала транзистор T1 открыт, а транзистор T2 закрыт. Ток i1 транзистора T1 создает положительную полуволну тока в нагрузочном резисторе R. В отрицательном полупериоде открывается транзистор T2, и теперь его ток i2, имеющий противоположное току i1 направление, протекает через нагрузочный резистор. Таким образом, на нагрузке формируется полный синусоидальный сигнал, соответствующий двум половинам полного периода входного сигнала. Следует отметить, что в рассматриваемом каскаде транзисторы включены по схеме с общим коллектором, то есть как эмиттерные повторители, поскольку выходной сигнал снимается с эмиттеров транзисторов.
На рис. 30.14 приведена полная схема двухтактного усилителя мощности на комплементарных транзисторах вместе с предвыходным каскадом.
Рис. 30.13. Базовая схема двухтактного усилителя на комплементарных транзисторах.
Рис. 30.14. Двухтактный усилитель на комплементарных транзисторах с независимой цепью смещения для транзистора T1 предвыходного каскада.
Схема модифицирована для питания от одного источника. Транзистор T1 работает в предвыходном каскаде (предусилителе мощности). Цепь смещения R1 — R2 обеспечивает работу этого каскада в режиме класса А. При подаче питания устанавливается нормальный статический режим транзистора T1 (транзистор открыт). Разделительный конденсатор Сз разряжен. Следовательно, потенциал точки А, где соединяются эмиттеры транзисторов T2 и T3, равен нулю. Однако базы этих транзисторов находятся под положительным потенциалом, определяемым напряжением на коллекторе транзистора T1. Это положительное напряжение открывает транзистор T2. Транзистор T3 (рпр-типа) при этом закрыт. Таким образом, ток i2, протекающий через открытый транзистор, будет заряжать конденсатор C3, как показано на схеме. По мере заряда этого конденсатора возрастает напряжение в точке А. Процесс зарядки продолжается до тех пор, пока не закроется транзистор T2. Это происходит в тот момент, когда напряжение на эмиттере этого транзистора (в точке А) сравнивается с напряжением на его базе.
Если статический режим транзистора T1 выбран таким образом, что его коллекторное напряжение равно 0,5VCC, то транзистор T2 закроется, как только потенциал точки А возрастет до 0,5VCC. В результате схема будет сбалансирована по постоянному току и каждому транзистору будет приложено напряжение, равное половине напряжения источника питания. Транзисторы T2 и T3 оказываются в отсечке (режим класса В) с нулевым напряжением смещения на их эмиттерных переходах, т. е. они находятся на грани включения при отсутствии входного сигнала.
При подаче входного сигнала транзистор T1 находится в проводящем состоянии в течение всего периода, усиливая этот сигнал и обеспечивая «раскачку» выходных транзисторов T2 и T3. Комплементарная пара выходных транзисторов обеспечивает дальнейшее усиление сигнала, как это рыло описано выше при рассмотрении базовой схемы.
Схема на рис. 30.14 имеет низкую стабильность по постоянному тору. Любое изменение тока транзистора T1 вызывает изменение статического режима выходной пары транзисторов, что может привести к искажениям выходного сигнала. Для улучшения стабильности используется отрицательная обратная связь по постоянному току, обеспечивающая автоматическую подстройку смещения транзистора T1, как показано на рис. 30.15. Постоянное напряжение, действующее в точке А (0,5Vcc), подается обратно на базу транзистора T1 через резистор обратной связи RF. В этой схеме громкоговоритель подключен к положительной шине источника питания через разделительный конденсатор С3. Заметим, что в такой конфигурации ток транзистора T3 заряжает этот конденсатор, а ток транзистора T2 разряжает его. Вообще, транзистор, включенный «последовательно» с разделительным конденсатором, заряжает его, а включенный «параллельно» — разряжает. Через резистор R4 на базы выходных транзисторов подается небольшое напряжение прямого смещения, обеспечивающее уменьшение искажений типа «ступенька». Резисторы R6 и R7 в эмиттерных цепях транзисторов T2 и T3 обеспечивают стабильность по постоянному току, а также неглубокую обратную связь по переменному оку, улучшающую частотные характеристики усилителя.
Рис. 30.15. Типичный двухтактный усилитель мощности на комплементарных резисторах. Смещение на базу транзистора Т1 подается через резистор отрицательной обратной связи RF.
Усилители постоянного тока
При усилении сигналов постоянного тока между каскадами действует непосредственная связь, как показано на рис. 30.16. Напряжение на базу транзистора Т2 напрямую подается с коллектора транзистора Т1. Поэтому статический режим (в отсутствие сигнала) транзистора Т2 определяется статическим режимом предыдущего каскада. Отсутствие разделительного конденсатора позволяет усиливать самые низкочастотные сигналы.
Усилители постоянного тока подвержены так называемому дрейфу, представляющему собой сдвиг рабочей точки усилителя при изменении температуры. Для устранения дрейфа в схему включаются термисторы (термосопротивления) или другие температурно-чувствительные элементы, как показано на рис. 30.16.
Рис. 30.16. Усилитель с непосредственной связью.
Обратная связь в усилителях
На рис. 30.17 показана система с обратной связью, в которой часть выходного напряжения подается обратно на вход усилителя. Напряжение υf есть напряжение обратной связи, которое добавляется к входному напряжению υi для получения эффективного входного напряжения ei, действующего непосредственно на входе усилителя. Цепь обратной связи В передает весь или часть β выходного сигнала обратно на вход усилителя. Если выходное напряжение равно υ0, то напряжение обратной связи равно
υf = βυ0
Эффективный сигнал на входе усилителя υi = ei + υf = ei + βυ0. При введении обратной связи коэффициент усиления становится равным
Рис. 30.17. Обратная связь в усилителях.
При введении отрицательной обратной связи, когда напряжение обратной связи находится в противофазе с входным напряжением, эффективное входное напряжение ei = υi – υf, что приводит к уменьшению коэффициента усиления всей системы. При положительной обратной связи ситуация изменяется на обратную: напряжение обратной связи находится в фазе с входным напряжением, и эффективное входное напряжение ei = υi + υf, т. е. превышает входное напряжение на величину напряжения обратной связи, в результате увеличивается коэффициент усиления всей системы.
Используя величины, указанные на рис. 30.17, и предполагая, что действует отрицательная обратная связь, можно рассчитать некоторые параметры системы с обратной связью.
Эффективное входное напряжение ei = 10 — 2 = 8 мВ.
Выходное напряжение υ0 = 8 · 100 = 800 мВ.
Таким образом, коэффициент усиления системы с обратной связью
Коэффициент обратной связи
Различают обратную связь по току и обратную связь по напряжению. При обратной связи по току напряжение обратной связи пропорционально выходному току. Например, в схеме на рис. 30.18 такая связь осуществляется через резистор R4. Когда напряжение обратной связи пропорционально выходному напряжению, мы имеем дело с обратной связью по напряжению. В схеме на рис. 30.18 обратная связь по напряжению осуществляется через цепь C2 – R3.
Таблица 30.1. Сравнение характеристик систем с отрицательной и положительной обратной связью
Положительная обратная связь |
Отрицательная обратная связь |
1. Высокий коэффициент усиления 2. Узкая полоса пропускания 3. АЧХ с выбросами 4. Низкое входное сопротивление 5. Высокое выходное сопротивление 6.Вносит нестабильность как по переменному току (возникновение колебательных процессов), так и по постоянному току (неустойчивость стационарного режима) 7. Применяется в генераторах |
1. Низкий коэффициент усиления 2. Широкая полоса пропускания 3. Плоская АЧХ 4. Высокое входное сопротивление 5. Низкое выходное сопротивление 6. Улучшается устойчивость системы, как по переменному, так и по постоянному току 7. Часто применяется для улучшения устойчивости и расширения полосы пропускания усилителя |
Рис. 30.18. Усилитель на транзисторе, включенном по схеме с ОЭ, с двумя видами обратной связи: по току (через резистор R4) и по напряжению (через цепь C2 – R3).
Усилители радиочастоты (УРЧ)
На радиочастотах, например в УКВ-диапазоне, влияние межэлектродных емкостей транзистора, особенно между коллектором и базой, становится очень заметным. Для устранения влияния этих емкостей используется усилитель по схеме с общей базой. Однако в схеме с ОБ транзистор имеет низкое входное сопротивление, которое чрезмерно нагружает предыдущий каскад, работающий на усилитель.
Рис. 30.19. Каскодный усилитель.
Для решения проблемы существуют два метода. В первом методе используется усилительс ОЭ и схемой нейтрализации обратной связи. Такая схема компенсирует, или нейтрализует, отрицательную обратную связь через емкость перехода коллектор-база за счет введения еще одной петли обратной связи, но противоположного знака.
Во втором методе используется усилитель с общим эмиттером, каскодно включенный с усилителем с общей базой (рис. 30.19). Транзистор T1 работает в усилителе с ОЭ, а транзистор T2 — в усилителе с ОБ. Входной сигнал подается на базу транзистора T1. Его эмиттер развязан с шасси через конденсатор С3. Выходной сигнал с коллектора транзистора T1 подается на эмиттер транзистора T2, база которого развязана с шасси через конденсатор С1. Смещение обоих транзисторов обеспечивает резисторная цепочка R1 – R2 – R3.
Hi-Fi-усилители
Английское сокращение Hi-Fi(high fidelity — высокая верность передачи или воспроизведения, читается «хи-фи») используется для обозначения высокого качества. Этот термин применяется в звуковоспроизводящей аппаратуре, которая обеспечивает реалистичное воспроизведение исходного звука, — другими словами, высокое качество воспроизведения. Hi-Fi-системы должны иметь широкую полосу пропускания (40 Гц — 16 кГц), низкий уровень шумов и воспроизводить звук с минимальными искажениями.
Регулировка тембра
регулировка тембра нужна для расширения или сужения (т. е. изменения формы) АЧХ усилителя. Регулировка тембра осуществляется в области нижних (низкочастотный участок АЧХ) и верхних (высокочастотный участок АЧХ) звуковых частот. Для этой цели используются самые различные схемы: начиная от простейшей цепи, состоящей из последовательно включенных конденсатора и резистора, до очень сложных систем с использованием обратной связи. На рис. 30.20 приведена схема регулятора тембра с возможностью независимой регулировки тембра в области нижних и верхних звуковых частот. На элементах R1 и C1 выполнен делитель напряжения поступающего сигнала ЗЧ. Поскольку реактивное сопротивление конденсатора C1 мало па высоких частотах, этот делитель обеспечивает ослабление верхних звуковых частот, причем степень ослабления зависит от установки движка потенциометра R1. Элементы R2 и C2 образуют еще один делитель. Конденсатор C2 имеет высокое реактивное сопротивление в области нижних звуковых частот, поэтому второй делитель ослабляет эти частоты в степени, зависящей от установки потенциометра R2.
Рис. 30.20. Схема регулятора тембра.
Громкоговорители
Громкоговоритель представляет собой преобразователь электрической энергии в акустическую или звуковую энергию. Один из факторов, определяющих выбор громкоговорителя, — его АЧХ по звуковому давлению, т. е. диапазон эффективно воспроизводимых им звуковых частот. Еслидиапазон частот, воспроизводимых данным громкоговорителем, недостаточно широк, можно использовать два громкоговорителя, один из которых хорошо воспроизводит нижние, а другой — верхние звуковые частоты. На рис. 30.21 иллюстрируется один возможный способ разбиение частотного диапазона с помощью разделительного (двухполосного) фильтра.
Рис. 30.21. Двухполосный разделительный фильтр для акустической системы с использованием низкочастотного и высокочастотного громкоговорителей.
Разделительный фильтр состоит из фильтра нижних частот L1 — C1, к выходу которого подключается низкочастотный громкоговоритель, и фильтра верхних частот L2 — C2, связанного с высокочастотным громкоговорителем.
Другими факторами, влияющими на выбор громкоговорителя, являются его выходная мощность, КПД и сопротивление (для согласования с УЗЧ).
В этом видео рассказывается об усилителе мощности для самостоятельной сборки:
Добавить комментарий
Схемы усилителей мощности на германиевых транзисторах. Секреты звучания забытых германиевых УНЧ.
Эх, жалко пацанов — королевство маловато, разгуляться негде!
Ни ламповых тебе однотактников, ни гераниевых раритетов… Что ещё остаётся пытливому уму неоперившегося меломана?
Разве что брейкануть под японское хокку, да кайфануть для большего эффекта под уханье бумбокса.
«Кремний — всему голова» — крикнут яростные члены на форумных дебатах.
«Не надо впаривать нам этот шняга-силикатный экстракт» — вторят им другие, «для начала послушайте своими руками, а потом делайте свои
тупоголовые выводы».
На самом деле, слушать надо!
Перелопатить определённое количество разномастной усилительной аппаратуры — тоже надо.
Не обязательно быть музыкантом со стажем, но таить в себе зачатки какого-никакого слуха — опять же, надо.
И тогда любой пацак, владелец старого пепелаца, сможет авторитетно заявить:
«Однако разница в звуке есть, и она весьма существенна!»
На этой странице поговорим об УНЧ на германиевых транзисторах.
Своеобразие германиевого звучания, как правило, сводится к двум устойчивым постулатам:
1. Усилители на германиевых транзисторах отличаются музыкальностью,
2. Звук похож на звук ламповика.
И если первый пункт у меня возражений не вызывает, то со вторым мнением коллег позволю вежливо не согласиться — не похож,
абсолютно разное звучание.
Электрофон сетевой транзисторный «Вега-101-стерео» с усилителем на германиевых транзисторах, выпускаемый Бердским радиозаводов
с начала 1972 по 1982 год, заложил в головы современников основы понимания того, каким должен быть высококачественный
стереофонический звук.
Время шло, появлялись на свет и более продвинутые вертушки с магнитными звукоснимателями, и значительно более мощные УНЧ
на кремниевых транзисторах с незаурядными характеристиками.
Однако душещипательные воспоминания о том, как звучали в конце 70-ых простенькие Веги с их примитивной схемотехникой
открыли историю ожесточённой борьбы человечества с феноменом транзисторного звучания.
Ну да и ладно, пора переходить на новый уровень — нарисовать пару-тройку принципиальных схем усилителей низкой частоты
на германиевых транзисторах, но для начала озадачусь вопросом: Что любит и что не любит германий?
1. Германий любит простоту и не приемлет наворотов. Дифференциальный каскад с источником тока в цепи эмиттера —
уже является буржуазным излишеством.
2. Германий не любит перегрева, легко может напустить дыма и отправиться к праотцам электроники Амперу и Ому в ответ
на потерю бдительности в процессе настройки схемы.
А теперь обещанные схемы.
Рис.1
Номинальная мощность усилителя при коэффициенте гармоник на частоте 1000Гц менее 0,1% — 1 Вт, максимальная — 1,5Вт,
чувствительность по входу — 0,2 В.
Усилитель сохраняет работоспособность при понижении напряжения питания до 9В.
Подбором номинала резистора R8 устанавливается значение напряжения на эмиттерах выходных транзисторов, равное половине напряжения
питания.
Подбором номинала резистора R2 устанавливается значение напряжения на коллекторе транзистора V1, равное половине напряжения питания.
Рис.2
Схема, приведённая на Рис.2 — для эстетов, желающих порадовать свой слуховой аппарат ни с чем не сравнимым звуком однотактного усилителя,
работающего в чистом режиме А.
Для настройки усилителя следует подбором номинала резистора R9 установить ток покоя выходного транзистора — 150мА.
Рис.3
На рис.3 показана принципиальная схема универсального усилителя НЧ, собранного на девяти транзисторах и развивающего
выходную мощность до 10 Вт при сопротивлении нагрузки 4 Ом и входном напряжении около 10 мВ.
При налаживании устройства подстроечным резистором R2 устанавливают выходное напряжение в точке соединения транзисторов VT8 и VT9
равным половине напряжения питания.
Схема более мощного усилителя приведена на Рис.4. Усилитель рассчитан на подключение электрогитары и микрофона, но может
быть использован также совместно с проигрывателем, магнитофоном или радиоприёмником.
Основные технические данные, приведённые автором:
Номинальная выходная мощность — 30 Вт.
Максимальная выходная мощность — 40 Вт.
Сопротивление нагрузки 3,5-5 Ом.
Полоса рабочих частот 30-16000 Гц.
Коэффициент нелинейных искажений — не более 1,5%.
Чувствительность с выхода микрофона — 10 мВ.
Чувствительность с выхода электрогитары — 0,1 В.
Напряжение 15 В на коллекторе транзистора Т10 устанавливают резистором R19.
Ток покоя всего усилителя не должен превышать 170 мА.
Рис.5
На Рис.5 приведена схема простого и мощного усилителя на германиевых транзисторах DTG110B.
При подключении к его входу любого УНЧ мощностью 1,5-2 Вт устройство выдаёт на 8-ми омную нагрузку около 50 Вт чистого германиевого
звука.
Согласующий трансформатор Т1 выполнен на железе Ш24 (толщина пакета 20-25мм) и содержит 3 одинаковые обмотки по 120 витков,
намотанных на картонном каркасе проводом ПЭВ-1 или ПЭВ-2 диаметром 0,5-0,7мм.
Налаживание устройства заключается в подборе значений резисторов R2 R4 для достижения на выходе схемы нулевого потенциала и тока покоя
транзисторов — 120-150 мА.
При снижении напряжения питания на каждом плече до 30В транзисторы DTG110B без каких-либо колебаний могут быть заменены на отечественные
П210А.
Рис.6
Схема, представленная на Рис.6, является переработанным под «германий» вариантом усилителя НЧ из статьи Николая Трошина журнале Радио №8 за 1989г (стр. 51-55). Творцом переработки является сам автор статьи. Вот что он пишет на страннице сайта http://vprl.ru:
«Выходная мощность этого усилителя 30 Вт при сопротивлении нагрузки акустических систем 4 Ома, и примерно 18 Вт при сопротивлении
нагрузки 8 Ом.
Напряжение питания усилителя (U пит) двухполярное ±25 В;
Диапазон рабочих частот 20Гц…20кГц:
Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г – на ГТ402В; ГТ404Г – на ГТ404В;
Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в
этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки
усиления тока на высокой частоте.
Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2.
На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.
Настройка правильно собранного из исправных элементов усилителя сводится к установке подстроечным резистором тока покоя выходного каскада
100мА (удобно контролировать на эмиттерном резисторе 1 Ом – напряжение 100мВ).
Диод VD1 желательно приклеить или прижать к радиатору выходного транзистора, что способствует лучшей термостабилизации.
Однако если этого не делать, ток покоя выходного каскада от холодного 100мА до горячего 300мА меняется, в общем-то, не катастрофично.
Важно: перед первым включением необходимо выставить подстроечный резистор в нулевое сопротивление.
После настройки желательно подстроечный резистор выпаять из схемы, измерить его реальное сопротивление и заменить на постоянный».
Феномен транзисторного звучания УНЧ против «тёплого» лампового звука. История борьбы с феноменом транзисторного звучания уходит в далёкие 80-ые годы. С появлением продвинутых мощных транзисторных усилителей низкой частоты многих гурманов качественного воспроизведения музыки постигло разочарование — новинки с более высокими электрическими характеристиками никак не могли сравниться со своими ламповыми собратьями по мягкости и естественности звучания. Мало того, по «качеству» звучания они субъективно уступали и стареньким германиевым УМЗЧ, выполненным по канонам простейшей схемотехники, присущей ламповым конструкциям. Сотни умных разработчиков чесали свои просветлённые репы в надежде хоть как-то снизить тембральные искажения в транзисторных усилителях, меняли схемотехнику и элементную базу, оживлённо гнались за сверхпараметрами, писали разные статьи, пока не поняли, что к цифрам, указанным в характеристиках усилителя надо относиться сдержанно, а верить можно только собственным ушам. Однако, проиграв глобальную борьбу с лампой за чистоту музыкального звучания УНЧ, обиженные, но не разбитые в пыль транзисторные аудиофилы всё же собрались духом и вынесли на своих плечах ряд постулатов о происхождении в УНЧ пресловутого транзисторного звучания: 1 — Глубокая отрицательная обратная связь, без которой не обходится ни один транзисторный усилитель, порождает
переходные искажения, вызванные запаздыванием сигналов в петле обратной связи. ИТАК, подытожим всё сказанное: Не так давно я наткнулся на обсуждение темы «Про тёплый ламповый звук». Полемика велась на странице
http://www.yaplakal.com/forum7/st/320/topic988477.html и, как это часто водится на любом неспециализированном форуме — никакого особого
интереса не представляла… И всё было бы как обычно, если бы не единичный комментарий товарища по имени «aleks49».
Вывод. Существует проблема фазоинверторов. Как получить противофазные сигналы с минимумом нелинейных искажений? Мои соображения по поводу «мягкого лампового звука». Это сообщение отредактировал aleks49 — 12.01.2017 — 21:47
|
Простой германиевый усилитель мощности — Усилители на транзисторах — Звуковоспроизведение
Николай Трошин
В последнее время заметно вырос интерес к усилителям мощности на германиевых транзисторах. Есть мнение, что звучание таких усилителей более мягкое, напоминает «ламповый звук».
Предлагаю вашему вниманию две простые схемы усилителей мощности НЧ на германиевых транзисторах, опробованные мной некоторое время назад.
Здесь использованы более современные схемные решения, чем те, которые использовались в 70-е годы, когда «германий» был в ходу. Это позволило получить приличную мощность при хорошем качестве звучания.
Схема на рисунке ниже, является переработанным под «германий» вариантом усилителя НЧ из моей статьи в журнале Радио №8 за 1989г (стр. 51-55).
Выходная мощность этого усилителя 30 Вт при сопротивлении нагрузки акустических систем 4 Ома, и примерно 18 Вт при сопротивлении нагрузки 8 Ом.
Напряжение питания усилителя (U пит) двухполярное ±25 В;
Диапазон рабочих частот 20Гц…20кГц:
Несколько слов о деталях:
При сборке усилителя, в качестве конденсаторов постоянной ёмкости (помимо электролитических), желательно применять слюдяные конденсаторы. Например типа КСО, такие, как ниже на рисунке.
Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г – на ГТ402В; ГТ404Г – на ГТ404В;
Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки усиления тока на высокой частоте.
Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2.
На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.
Пластина разрезается по линиям, потом этой заготовке придают форму трубки, используя для этой цели любую подходящую цилиндрическую оправку (например сверло).
После этого заготовку (1) плотно надевают на корпус транзистора (2) и прижимают пружинящим кольцом (3), предварительно отогнув боковые крепёжные ушки.
Кольцо изготовляется из стальной проволоки диаметром 0,5-1,0 мм. Вместо кольца можно использовать бандаж из медной проволоки.
Теперь осталось загнуть снизу боковые ушки для крепления радиатора за корпус транзистора и отогнуть на нужный угол надрезанные перья.
Подобный радиатор можно также изготовить и из медной трубки, диаметром 8мм. Отрезаем кусок 6…7см, разрезаем трубку вдоль по всей длине с одной стороны. Далее на половину длины разрезаем трубку на 4 части и отгибаем эти части в виде лепестков и плотно надеваем на транзистор.
Так как диаметр корпуса транзистора где-то 8,2 мм, то за счёт прорези по всей длине трубки, она плотно оденется на транзистор и будет удерживаться на его корпусе за счёт пружинящих свойств.
Резисторы в эмиттерах выходного каскада – либо проволочные мощностью 5 Вт, либо типа МЛТ-2 3 Ом по 3шт параллельно. Импортные пленочные использовать не советую – выгорают мгновенно и незаметно, что ведет к выходу из строя сразу нескольких транзисторов.
Настройка:
Настройка правильно собранного из исправных элементов усилителя сводится к установке подстроечным резистором тока покоя выходного каскада 100мА (удобно контролировать на эмиттерном резисторе 1 Ом – напряжение 100мВ).
Диод VD1 желательно приклеить или прижать к радиатору выходного транзистора, что способствует лучшей термостабилизации. Однако если этого не делать, ток покоя выходного каскада от холодного 100мА до горячего 300мА меняется, в общем-то, не катастрофично.
Важно: перед первым включением необходимо выставить подстроечный резистор в нулевое сопротивление.
После настройки желательно подстроечный резистор выпаять из схемы, измерить его реальное сопротивление и заменить на постоянный.
Самая дефицитная деталь для сборки усилителя по вышеприведённой схеме — это выходные германиевые транзисторы ГТ806. Их и в светлое советское время было не так легко приобрести, а сейчас наверно и того труднее. Гораздо проще найти германиевые транзисторы типов П213-П217, П210.
Если Вы не сможете по каким либо причинам приобрести транзисторы ГТ806, то Вашему вниманию предлагается ещё одна схема усилителя, где в качестве выходных транзисторов, можно использовать как раз вышеупомянутые П213-П217, П210.
Схема эта – модернизация первой схемы. Выходная мощность этого усилителя составляет 50Вт при сопротивлении нагрузки 4 Ом и 30Вт при 8-Омной нагрузке.
Напряжение питания этого усилителя (U пит) так же двухполярное и составляет ±27 В;
Диапазон рабочих частот 20Гц…20кГц:
Какие же изменения внесены в эту схему;
Добавлены два источника тока в «усилитель напряжения» и еще один каскад в «усилитель тока».
Применение еще одного каскада усиления на довольно высокочастотных транзисторах П605, позволило несколько разгрузить транзисторы ГТ402-ГТ404 и расшевелить совсем уж медленные П210.
Получилось довольно не плохо. При входном сигнале 20кГц, и при выходной мощности 50Вт — на нагрузке искажений практически не заметно (на экране осциллографа).
Минимальные, мало заметные искажения формы выходного сигнала с транзисторами типа П210, возникают только на частотах около 20 кгц при мощности 50 вт. На частотах ниже 20 кгц и мощностях менее 50 вт искажений не заметно.
В реальном музыкальном сигнале таких мощностей на столь высоких частотах обычно не бывает, по этому отличий в звучании (на слух) усилителя на транзисторах ГТ806 и на транзисторах П210 я не заметил.
Впрочем, на транзисторах типа ГТ806, если смотреть осциллографом, усилитель работает все-таки лучше.
При нагрузке 8 Ом в этом усилителе, также возможно применение выходных транзисторов П216…П217, и даже П213…П215. В последнем случае напряжение питания усилителя нужно будет снизить до ±23В. Выходная мощность при этом, разумеется, тоже упадет.
Повышение же питания — ведет к увеличению выходной мощности, и я думаю, что схема усилителя по второму варианту имеет такой потенциал (запас), однако, я не стал экспериментами искушать судьбу.
Радиаторы для этого усилителя обязательны следующие – на выходные транзисторы площадью рассеивания не менее 300см2, на предвыходные П605 – не менее 30см2 и даже на ГТ402, ГТ404 (при сопротивлении нагрузки 4 Ом) тоже нужны.
Для транзисторов ГТ402-404 можно поступить проще;
Взять медную проволоку (без изоляции) диаметром 0,5-0,8, намотать на круглую оправку (диаметром 4-6 мм) проволоку виток к витку, согнуть в кольцо полученную обмотку (с внутренним диаметром меньше диаметра корпуса транзистора), соединить концы пайкой и надеть полученный «бублик» на корпус транзистора.
Эффективней будет наматывать проволоку не на круглую, а на прямоугольную оправку, так как при этом увеличивается площадь соприкосновения проволоки с корпусом транзистора и соответственно повышается эффективность отвода тепла.
Также для повышения эффективности отвода тепла для всего усилителя, можно уменьшить площадь радиаторов и применить для охлаждения 12В куллер от компьютера, запитав его напряжением 7…8В.
Транзисторы П605 можно заменить на П601…П609.
Настройка второго усилителя аналогична описанной для первой схемы.
Несколько слов об акустических системах. Понятно, что для получения хорошего звучания они должны иметь соответствующую мощность. Желательно также, используя звуковой генератор — пройтись на разных мощностях по всему диапазону частот. Звучание должно быть чистым, без хрипов и дребезга. Особенно, как показал мой опыт, этим грешат высокочастотные динамики колонок типа S-90.
Если у кого возникнут какие либо вопросы по конструкции и сборке усилителей — задавайте, по возможности постараюсь ответить.
Удачи всем Вам в Вашем творчестве и всего наилучшего!
Мощный германиевый усилитель — Усилители на транзисторах — Звуковоспроизведение
Жан Цихисели
Типичные ошибки при конструировании германиевых усилителей, происходят из за желания, получить от усилителя широкую полосу пропускания, малые искажения и т.д.
Привожу схему моего первого германиевого усилителя, спроектированного мной в 2000г.
Хотя схема вполне работоспособна, её звуковые качества оставляют желать лучшего.
Схема первого усилителя..
Практика показала, что применение дифференциальных каскадов, генераторов тока, каскадов с динамической нагрузкой, токовых зеркал и других ухищрений с ООС не всегда приводят к желаемому результату, а иногда просто ведут в тупик.
Наилучшие практические результаты для получения высокого качества звучания, дает применение однотактных каскадов пред. усиления и использование меж-каскадных согласующих трансформаторов.
Вашему вниманию представлен германиевый усилитель с выходной мощностью 60 Вт, на нагрузке 8 Ом. Выходные транзисторы используемые в усилителе П210А, П210Ш. Линейность 20-16000гц.
Субъективной нехватки высоких частот практически не ощущается.
При нагрузке 4ом усилитель выдает 100вт.
Схема усилителя на транзисторах П-210.
Усилитель питается от не стабилизированного, блока питания с выходным, двух-полярным напряжением +40 и -40 вольт.
На каждый канал, применяется отдельный мост из диодов Д305, которые устанавливаются на небольшие радиаторы.
Конденсаторы фильтра, желательно применять не менее 10000мк в плечо.
Данные силового трансформатора:
-железо 40 на 80. Первичная обмотка содержит 410 вит. провода 0,68. Вторичная по 59 вит. провода 1,25, намотанных четыре раза (две обмотки — верхнее и нижнее плечо одного канала усилителя, оставшиеся две — второго канала)
.Дополнительно по силовому трансформатору:
железо ш 40 на 80 от блока питания телевизора КВН. После первичной обмотки устанавливается экран из медной фольги. Один незамкнутый виток. К нему припаивается вывод который затем заземляется.
Можно использовать любое, подходящее по сечению ш железо.
Согласующий трансформатор выполнен на железе Ш20 на 40.
Первичная обмотка разделена на две части и содержит 480 вит.
Вторичная обмотка содержит 72 витка и мотается в два провода одновременно.
Сначала наматывается 240 вит первичкм, затем вторичка, затем снова 240 вит первички.
Диаметр провода первички 0,355 мм, вторички 0,63 мм.
Трансформатор собирается в стык, зазор — прокладка из кабельной бумаги примерно 0,25 мм.
Резистор 120 Ом включен для гарантированного отсутствия самовозбуждения при отключенной нагрузке.
Цепочки 250 Ом +2 по 4.7 Ом, служат для подачи начального смещения на базы выходных транзисторов.
С помощью подстроечных резисторов 4,7 Ом, устанавливается ток покоя 100ма. На резисторах в эмиттерах выходных транзисторов 0,47 Ом, должно при этом быть напряжение, величиной 47 мв.
Выходные транзисторы П210, должны быть при этом, практически едва теплые.
Для точной установки нулевого потенциала, резисторы 250 Ом, должны быть точно подобраны ( в реальной конструкции состоят из четырех резисторов по 1 кОм 2вт).
Для плавной установки тока покоя, используются подстроечные резисторы R18, R19 типа СП5-3В 4,7 Ом 5%.
Внешний вид усилителя сзади, изображен на фотографии ниже.
— Можно узнать Ваши впечатления от звучания этого варианта усилителя, в сравнении с предыдущим безтрансформаторным вариантом на П213-217?
Еще более насыщенное сочное звучание. Особо подчеркну качество баса. Прослушивание проводилось с открытой акустикой на динамиках 2А12.
— Жан, а все таки почему именно П215 и П210, а не ГТ806/813 в схеме стоят?
Внимательно посмотрите параметры и характеристики всех этих транзисторов, я думаю Вы все поймете, и вопрос отпадет сам собой.
Отчетливо осознаю желание многих, сделать германиевый усилитель более широкополосным. Но реальность такова, что для звуковых целей многие высокочастотные германиевые транзисторы не совсем подходят. Из отечественных могу рекомендовать П201, П202, П203, П4, 1Т403, ГТ402, ГТ404, ГТ703, ГТ705, П213-П217, П208, П210. Метод расширения полосы пропускания — применение схем с общей базой, или использования импортных транзисторов.
Применение схем с трансформаторами, позволило добиться отличных результатов и на кремнии. Разработан усилитель на 2N3055.
Поделюсь в ближайшее время.
— А что там с «0» на выходе? При токе 100 мА трудно верится, что его удастся удержать в процессе работы в приемлемых +-0.1 В.
В аналогичных схемах 30-и летней давности (схема Григорьева), это решается либо «виртуальной» средней точкой либо электролитом:
Усилитель Григорьева.
Нулевой потенциал удерживается в указанном Вами пределе. Ток покоя вполне можно делать и 50ма. Контролируется по осциллографу до исчезновения ступеньки. Больше нет необходимости. Далее, все ОУ легко работают на нагрузку 2ком. Поэтому особых проблем согласования с CD нет.
Некоторые высокочастотные германиевые транзисторы требуют внимания и дополнительного изучения их в звуковых схемах. 1Т901А, 1Т906А, 1Т905А, П605-П608, 1ТС609, 1Т321. Пробуйте,нарабатываете опыт.
Иногда происходили внезапные отказы транзисторов 1Т806, 1Т813, поэтому могу рекомендовать их с осторожностью.
Им надо ставить «быструю» защиту по току, рассчитанную на ток больший максимального в данной схеме. Чтобы не было срабатывания защиты в нормальном режиме. Тогда они работают очень надёжно.
Добавлю свою версию схемы Григорьева
Версия схемы усилителя Григорьева.
Подбором резистора с базы входного транзистора устанавливается половина напряжения питания в точке соединения резисторов 10ом. Подбором резистора параллельно диоду 1N4148, устанавливается ток покоя.
— 1. У меня в справочниках Д305 нормированы на 50в. Может безопаснее применить Д304? Думаю 5А — достаточно.
— 2. Укажите реальные h31 для приборов установленных в этом макете или их минимально-требуемые значения.
Вы совершенно правы. Если нет необходимости в большой мощности. На каждом диоде напряжение составляет около 30 В, так что проблем с надежностью не возникает. Применены были транзисторы со следующими параметрами; П210 h31-40, П215 h31-100, ГТ402Г h31-200.