Мощный стабилизатор на 12 вольт схема: Мощный стабилизатор напряжения 12 вольт 30а

Содержание

Мощный блок питания на напряжение 5-35В и ток 5A-30A и более (LM338, 741)

Приведена принципиальная схема простого в изготовлении стабилизированного и мощного блока питания с регулируемым выходным напряжением от 5В до 35В и током нагрузки 5А, 10А, 20А, 30А, 40А и более (в зависимости от количества микросхем).

Источник питания может обеспечить токи до 5А (одна микросхема), 10А(две микросхемы), 20А(4шт), 30А(6шт), 40А(8шт) и т.д. Напряжение можно регулировать, например можно выставить часто используемые напряжения 5В, 12В, 24В, 28В, 30В и другие.

Принципиальная схема

В основе блока питания лежат мощные интегральные стабилизаторы LM338, каждый из которых может обеспечить выходной ток до 5А при напряжении от 1,2 до 35В (данные из даташита).

Рис. 1. Принципиальная схема мощного блока питания на напряжение 5В-30В и ток 5А, 10А, 20А, 30А и более.

Вторичная обмотка силового трансформатора должна выдавать переменное напряжение со значением не менее 18-25В. Мощность трансформатора желательно выбрать с запасом, в зависимости от требуемого напряжения и тока на выходе будущего блока питания.

Детали

Транзистор BD140 нужно установить на небольшой радиатор. Все интегральные стабилизаторы LM338 должны быть установлены на отдельные радиаторы достаточной площади для надежного отвода тепла.

Рис. 2. Внешний вид мощных интегральных стабилизаторов LM338.

Рис. 3. Цоколевка (расположение выводов) у микросхем LM338.

Все мощные микросхемы можно установить на один общий радиатор через слюдяные прокладки, поскольку корпуса микросхем не должны соединяться вместе.

Ток выдаваемый на выходе блока питания может быть увеличен или уменьшен соответственно добавлением или уменьшением количества применяемых пар «стабилизатор LM338 + резистор Rx».

К радиатору можно применить активное охлаждение — установить небольшой вентилятор от компьютера, подав для него питание через стабилизатор на 5-12В (7805, 7812), это позволит уменьшить размеры радиатора и увеличить эффективность теплоотвода.

Диодный мост можно применить готовый на нужный ток, также его можно собрать из четырех отдельных мощных диодов (D1-D4). Эти диоды должны быть рассчитаны на ток, который планируется получить на выходе стабилизатора.

Рис. 4. Цоколевка транзистора BD140 (P-N-P).

Рис. 5. Цоколевка микросхемы 741 в корпусе DIP-8, операционный усилитель.

Например, диодный мост из четырех выпрямительных диодов Д242 обеспечит рабочие токи до 10А. Диоды или диодный мост желательно установить на отдельный небольшой радиатор.

В качестве резисторов R3, R4…Rx можно установить керамические цементные или использовать проволочные, поскольку на каждом таком резисторе будет рассеиваться примерно 4-7 Ватт мощности (в зависимости от общей нагрузки на стабилизатор).

Печатная плата

Разводку печатной платы в формате Sprint Layout 6 нам прислал Александр. На ней отсутствует конденсатор С4 — его припаиваем к выводам переменного резистора R1, который будет крепиться на корпусе устройства и послужит для регулировки напряжения.

Рис. 6. Печатная плата для схемы мощного блока питания на микросхемах LM338.

Печатная плата в формате Sprint Layout 6 — Скачать (330 КБ):

  • PCB+High+power+regulater+0-30V+20A.jpg  — печатная плата с зарубежного сайта, конденсатор 4700мкФ установлен на выходе стабилизатора.
  • lm338-power-supply-layout-v1 — первый вариант печатной платы: на входе и выходе стабилизатора установлены конденсаторы 4700мкФ (C1 и C6), защитный диод (D6) отсутствует. Мощные резисторы по 0,3 Ом.
  • lm338-power-supply-layout-v2 — конечный вариант печатной платы: на входе два конденсатора по 4700мкФ (C1), на выходе — 22мкФ (C6), установлен защитный диод D6. Мощные резисторы по 0,1 Ом.

ВНИМАНИЕ! После распечатки трафарета для печатной платы из программы Sprint Layout убедитесь что плата будет изготовлена верно: ножка 4 микросхемы 741 должна идти к «GND -«, а ножка 6 — к катоду диода D5.

Даташит на микросхему LM338 — Скачать (220 КБ).

Подготовлено для сайта RadioStorage.net.

схема включения, характеристики, datasheet, аналоги

Согласно техническим характеристикам микросхема lm7812 является линейным стабилизатором положительной полярности с простой схемой включения. Его корпус имеет всего три внешних вывода, поэтому многие путают его с обычным транзистором, но на самом деле это более сложное полупроводниковое устройство.

Относится к широко известной во всем мире серии интегральных микросхем 78xx. Символы «lm» в начале маркировки в настоящее время обозначают её основного производителя — Texas Instruments. Первые две цифры «78» указывают на положительную полярность, а следующие за ними «12» на поддерживаемое напряжение стабилизации – 12В.

Цоколевка

Распиновка LM7812 следующая. Этот стабилизатор производится преимущественно в пластиковом корпусе ТО-220. Металлические выводы, если смотреть слева на право, имеют назначение: input (вход), ground (земля), output (выход). Очень редко, но встречаются идентичные изделия в упаковке ТО-263.

Стоит учитывать, что металлическая подложка у всех рассмотренных корпусов физически соединена с выводом «Ground».

Технические характеристики

7812 ещё называют регулятором с фиксированным напряжением в 12 В. При этом на вход микросхемы должно подаваться питание на 2-3 В больше, чем на выходе, иначе на нём не будет заявленных 12 В. Максимальный выходной ток может достигать 1,5 А с применением хорошего радиатора. Устройство технологически защищено: от теплового пробоя, короткого замыкания и превышения режимов безопасной работы (SOA). Что делает его практически «неубиваемым».

Максимальные параметры

Максимальными значениями характеристик для LM7812 считаются:

  • предельное напряжение на входе микросхемы не более 35 В;
  • сила тока на выходе до 1.5 А;
  • температура кристалла при работе может достигать +150 ОС;
  • температура хранения от -65 до +150 ОС;
  • допустимый нагрев припоя не более +230ОС, с интервалом до 10 сек.

Рассеиваемая мощность ограничена внутренней защитой (Internally limited), корпусным исполнением изделия и применением теплоотвода.

При расчёте максимальной рассеиваемой мощности работающего устройства применяют стандартную формулу PDmax = (TJmax — ТА) / θJA. Где TJmax – предельная температура кристалла, а ТА – предполагаемая для окружающего воздуха. θJA – это тепловое сопротивление к внешней среде, которое напрямую зависит от корпусного исполнения.

Например, для распространенных устройств в пластиковых ТО-220 θJA=54ОC/Вт. В случае использования радиатора, необходимо учитывать величину теплового сопротивления кристалла (θJC), которая составляет порядка 4ОC/Вт для такого корпуса.

Электрические параметры

Несмотря на то, что рассеиваемая мощность не приводится производителями в даташит вместе с  максимальными параметрами, её рекомендованное значение прослеживается в электрических характеристиках LM7812. В столбце «условия тестирования» указана допустимая величина PD не более 15 Вт, при изменении напряжения на входе до 27 В и токе на выходе до 1 А. Температура кристалла, при этом, должна находится в диапазоне от 0 до +125ОС.

Данные представленные в этой таблице получены путем тестирования с двумя сглаживающими конденсаторами на входе (до 0,22 мкФ) и выходе (до 0,1 мкФ).

Схема включения

Сама по себе LM7812 представляет собой схему стабилизации напряжения и подключения к ней устройство обычно осуществляется только для этого. По сути, кроме неё для выполнения этой функции больше ничего не требуется. Начинающие радиолюбители применяют её в своих разработках без дополнительной обвязки и она в них работает, но это не совсем правильное решение.

Желательно следовать рекомендациям производителей, которые приводят схему включения 7812 с использованием двух конденсаторов на 25 В и более. Их необходимо паять как можно ближе к контактам, для более устойчивой работы микросхемы. При этом на входе необходима емкость больше, чем на выходе. Несоблюдении этого правила приводит к нестабильности выходного напряжения при резком изменении в нагрузке. Кроме того, такая емкостная обвязка выполняет защитные функции от самовозбуждения.

В паспорте заявлено, что на выходе допускается вообще не устанавливать сглаживающий конденсатор. Это возможно благодаря тому, что роль силового регулирующего элемента внутри серии 78xx выполняет эмиттерный повторитель на транзисторе Дарлингтона. Но как показывает практика, небольшую емкость все же ставят для лучшего подавления выходных высокочастотных пульсаций.

Пример работы подобной схемы можно посмотреть в небольшом видеоролике.

Аналоги

У lm7812 есть полный отечественный аналог, им является линейный стабилизатор КР142ЕН8Б. В настоящее время выпускается большое количество зарубежных линейных стабилизаторов с аналогичными параметрами и функционалом. Вот некоторые из них: l7812, KA7812, MC7812, UA7812.

Производители

Скачать datasheet на lm7812 можно кликнув мышкой по ссылке с наименованием фирмы. Разброс цен на данное устройство достаточно большой. Порой её стоимость от разных производителей отличается в два-три раза. В российских радиомагазинах самой недорогой считается микросхема от китайской компании Inchange, далее следуют американские: Texas Instruments, Fairchild Semiconductor и др.

Блок питания 12 В 30 А

Используя один интегральный стабилизатор напряжения и несколько вынесенных проходных транзисторов можно собрать блок питания, способный обеспечивать ток нагрузки до 30 А. Конструкция показана на схеме ниже:

Примечания:
Входной трансформатор вероятнее всего будет самой дорогой частью устройства. В качестве альтернативного варианта можно использовать два автомобильных аккумулятора на 12 вольт. Входное напряжение на стабилизатор должно быть, по крайней мере на несколько вольт выше выходного напряжения (12 В), с тем чтобы стабилизатор мог поддерживать свой выход. В случае использования трансформатора выпрямительные диоды должны быть в состоянии пропускать прямой ток с высоким пиком, обычно 100 или более ампер. Интегральный стабилизатор будет пропускать только 1 ампер (или меньше) выходного тока, при этом остальной ток будет пропускаться через вынесенные проходные транзисторы. Конструкция устройства задумана так, что должна выдерживать нагрузку до 30 ампер, и для реализации этого требования параллельно соединены шесть транзисторов TIP2955. Рассеивание на каждом транзисторе равняется одной шестой полной нагрузки, однако всё-таки требуется использовать адекватный теплоотвод. При максимальном токе нагрузки будет создаваться максимальная мощность рассеивания, поэтому в этой части схемы потребуется большой теплоотвод. При выборе теплоотвода можно рассмотреть возможности установки вентилятора или теплоотвода с водяным охлаждением. В случае отказа мощных транзисторов стабилизатору придётся обеспечивать полный ток нагрузки, что приведёт к его выходу из строя с катастрофическими последствиями. Поэтому хорошей мерой предосторожности будет установка на выходе стабилизатора предохранителя 1 А. Нагрузка 400 мОм используется только в испытательных целях и не должна включаться в готовую схему. Вот как выглядит смоделированная работа схемы:


Расчёты:

Эта схема является прекрасным примером для иллюстрации законов Кирхгофа и законов напряжений. Если резюмировать: сумма токов, входящих в узел, должна быть равна току выходящему из узла, а суммарное напряжение цепи равняется нулю. Например, в приведённой выше диаграмме входное напряжение равняется 24 В. Падение напряжения на R7 составляет 4 вольта, а падение напряжения на входе стабилизатора составляет 20 вольт, 24 — 4 — 20 = 0. На выходе: суммарный ток нагрузки составляет 30 ампер, стабилизатор обеспечивает 0,866 А, а шесть транзисторов 4,855 А каждый, 30 = 6×4.2)/200 или примерно 160 мВт. Поэтому в качестве R7 следует использовать резистор мощностью 0,5 Вт. Входной ток на стабилизатор подводится через резистор в цепи эмиттера и через переход база–эмиттер мощных транзисторов. И снова, применяя правила Кирхгофа, входной ток стабилизатора 871 мА выводится из базовой цепи и 40,3 мА, проходящих через резистор 100 Ом. 871,18 = 40,3 + 830,88. Ток, выходящий из стабилизатора не может быть больше входного тока. Как видно, ток на стабилизаторе будет составлять всего 5 мА и, следовательно, стабилизатор не должен перегреваться.

 

cxema.org — Мощный стабилизатор тока и напряжения на TL494

Мощный стабилизатор тока и напряжения на TL494

Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат.  Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения. При желании можно увеличить выходной ток до 20-и и более ампер.

В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант — это попытка создания простого и достаточно мощного стабилизатора.

За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе  до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к. я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт.  Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

Устройство не боится коротких замыканий, просто сработает ограничение тока.

Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.

Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к. при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт. Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

Как это работает:

ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор,  и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции. Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ. По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки. При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное — микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.

Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494. Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения. Указанным резистором можно регулировать выходной ток.

Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.

Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков  намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.

Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.

Подробное описание и испытания блока можно посмотреть в видео

Печатная плата тут 

Стабилизатор на 12 вольт в автомобиле (видео)

 Многих автомобилистов часто терзают сомнения по поводу питания некоторых электро- потребителей в автомобиле. В принципе их беспокойства я могу разделить. Так и на личном опыте сталкивался с выходом из строя стабилизатора напряжения установленным в генераторе, что явно сказалось на работе оборудования на машине. Если на счет ламп и реле беспокойства меня не терзали, то высокотехонлогичные устройства типа видеорегистраторов, навигаторов и прочего, уже хотелось хоть как-то защитить стабилизатором. Именно о таком стабилизаторе на номинальное напряжение бортовой сети в 12 вольт я и расскажу в статье

 Подобная неисправность, выход стабилизатора из строя, часто встречалась на генераторах «классики», останется ли это наследственным у приемников Лады, это покажет время. Но с качеством у Лады всегда было не очень … В этой статье поговорю о другом, о том, как независимо от стабилизатора генератора обеспечить должное напряжение питания для электрических компонентов. Например питание светодиодной ленты, используемой в качестве элемента тюнинга, также лучше обеспечить через стабилизатор.

Принцип работы стабилизатора напряжения

 Стабилизаторы напряжения работают весьма тривиально. Весь смысл их работы сводится к внутреннему изменению сопротивления реагирующего на изменение управляющего напряжения, подающегося через подстроечный резистор. Подобные стабилизаторы вполне можно назвать интеллектуальными резисторами…
 Надо также понимать, что микросхемы имеют свой КПД, номинальное рабочее напряжение для входа и выхода. При этом напряжение на выходе будет всегда чуть ниже, чем на входе. Что собственно еще раз говорит о сущности КПД.

Микросхемы стабилизаторы на 12 вольт

В настоящее время фактически уже существуют готовые решения реализованные на микросхемах серии КР142, рассмотрим несколько из них. В этой статье мы расскажем о микросхеме КР142ЕН12, фактически рассчитанной на работу с напряжениями 12 вольт и микросхему КР142ЕН18, а также о их импортных аналогах. 
 Ту и другую можно использовать для стабилизации напряжения в вашем автомобиле. Микросхемы имеют защиту по пропускаемому току, а также в случае перегрева. Маркировка после букв ЕН указывает на номинальное напряжение с которым работает микросхема.  Однако микросхемы стабилизаторы регулируемые и могут работать с разным выходным и входным напряжением. Естественно, что выходное напряжение не будет выше входного и также надо учесть потери на КПД микросхемы.
 Итак, что на счет применения возможных микросхем для стабилизации напряжения в машине на 12 вольт и даже с вариациями по напряжению стабилизации, то они следующие. 

Микросхема Номинальное выходное напряжение, ток
1 LM317T от 1,2 в до 37 в, 1,5 А
2 КР142ЕН12 от 1,2 в до 37 (с индексом А — 1 А, с индексом Б — 1,5 А)
3 КР142ЕН18 от 1,2 в до 26,5 (с индексом А — 1 А, с индексом Б — 1,5 А)
4 LT337A от 1,2 в до 37 в, 1,5 А

Схемы стабилизатора на 12 вольт в автомобиле

Существует множество схем подключения микросхемы. Мы хотели бы привести самый простой, так как статья все же ориентирована на возможность все сделать самим, с минимальными усилиями, и что немаловажно для многих, не значительными знаниями и навыками в электронике.
 Итак схема стабилизатора для этих микросхем будет выглядеть следующим образом.


 
Для микросхемы КР142ЕН18 схема аналогична, единственное, придется произвести подстройку переменного резистора R2, для должного выходного напряжения. Мощность резисторов не менее 0,05 Вт, в данном случае она сильно будет зависеть от перепада между входным и выходным напряжением. Микросхему необходимо установить на радиатор. Максимальный рассеиваемый ток, протекаемый через микросхему 1,5 А. Для хорошей магнитолы конечно не хватит, но для менее мощных устройств, можно вполне применить. 

Подобные стабилизаторы вполне можно использовать и для другого ряда напряжений на выходе, ведь они регулируемые. То есть их можно использовать как стабилизаторы напряжения на 5, 7, 9 вольт.

 Стоит сказать, что у российских микросхем есть и импортный аналог, (см таблицу) их можно использовать  для тех же целей и с подключением по той же схеме.
 В случае, если вам надо подключить более мощное устройство питающееся через стабилизатор, с большим током потребления, то здесь можно подключить несколько микросхем параллельно, для снижения проходящего через них тока. Хотя это не лучший вариант. Лучше уж подбирать более мощный стабилизатор или переходить на ШИМ.

МИНИАТЮРНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

   Скопилось у меня много стабилизаторов APL1117 с разных компьютерных плат, я их иногда применяю для стабилизации нужных напряжений в зарядках от сотовых телефонов. И вот недавно понадобился носимый и компактный БП на 4,2 В 0,5 А для проверки телефонов с подзарядкой аккумуляторов, и сделал так — взял подходящую зарядку, добавил туда платку стабилизатора на базе данной микросхемы, работает отлично.

Схема стабилизатора на APL1117

   В lay файле есть две печатные платы, одна под стабилизаторы с регулировкой выходного напряжения, другая под фиксированные.

   На фото печатки регулировочный резистор R1 120 Ом выход 5 В, при 150 Ом — 4,2 В. Даташит на APL1117 есть тут.

   И вот для общего развития подробная информация о данной серии. APL1117 это линейные стабилизаторы напряжения положительной полярности с низким напряжением насыщения, производятся в корпусах SOT-223 и ID-Pack. Выпускаются на фиксированные напряжения 1,2, 1,5, 1,8, 2,5, 2,85, 3,3, 5,0 вольт и на 1,25 В регулируемый.

   Выходной ток микросхем до 1 А, максимальная рассеиваемая мощность 0,8 Вт для микросхем в корпусе SOT-223 и 1,5 Вт выполненных в корпусе D-Pack. Имеется система защиты по температуре и рассеиваемой мощности. В качестве радиатора может использоваться полоска медной фольги печатной платы, небольшая пластинка. Микросхема крепится к теплоотводу пайкой теплопроводящего фланца или приклеивается корпусом и фланцем с помощью теплопроводного клея.

   Применение микросхем этих серий обеспечивает повышенную стабильность выходного напряжения (до 1%), низкие коэффициенты нестабильности по току и напряжению (менее 10 мВ), более высокий КПД, чем у обычных 78LХХ, что позволяет снизить входные напряжения питания. Это особенно актуально при питании от батарей.

   Если требуется более мощный стабилизатор, который выдаёт ток 2-3 А, то типовую схему нужно изменить, добавив в нее транзистор VT1 и резистор R1.

Стабилизатор на микросхеме AMS1117 с транзистором

   Транзистор серии КТ818 в металлическом корпусе рассеивает до 3 Вт. Если требуется большая мощность, то транзистор следует установить на теплоотвод. С таким включением максимальный ток нагрузки может быть для КТ818БМ до 12 А. Автор проекта — Igoran.

   Форум по APL1117

   Форум по обсуждению материала МИНИАТЮРНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

Источники питания — Принципиальные схемы и документация на QRZ.RU

  • 5 схем преобразователей напряжения с импульсным возбуждением 16.11.2016
  • 7 схем импульсных стабилизаторов напряжения 16.11.2016
  • Alinco EDC-64 Ni-Cd battery charger Дешин Виталий RA9YON
  • Cхема простого и надежного стабилизатора напряжения из 8-15В в 5В (L7805) 16.11.2016
  • DC-DC преобразователь на микросхеме DPA Геннадий Бандура
  • Автомат защиты от перенапряжения дял сети 220В 16.11.2016
  • Автомат защиты сети от перенапряжения Владимир Козьмин UN7TAE
  • Автомат защиты сети от экстремальных отклонений напряжения 16.11.2016
  • Автоматическая защита сетевой радиоаппаратуры 16.11.2016
  • Автоматическая приставка к зарядному устройству для авто аккумулятора 16.11.2016
  • Автоматический ограничитель переменного тока 16.11.2016
  • Автоматическое зарядно-пусковое устройство для автомобильного аккумулятора 16.11.2016
  • Автоматическое зарядное и восстанавливающее устройство (0-10А) 16.11.2016
  • Автоматическое зарядное устройство 16.11.2016
  • Автоматическое зарядное устройство + режим десульфатации для аккумулятора 16.11.2016
  • Автоматическое зарядное устройство для кислотных аккумуляторов 16.11.2016
  • Автоматическое зарядное устройство на микросхеме К561ЛЕ5 16.11.2016
  • Автоматическое зарядное устройство с бестрансформаторным питанием 16.11.2016
  • Автоматическое импульсное зарядное устройство для аккумуляторов 12В 16.11.2016
  • Автоматическое малогабаритное универсальное зарядное устройство для 6 и 12 вольтовых аккумуляторов Сергей Чернов, Самара
  • Адаптер питания для систем стандарта PoE. Геннадий Бандура
  • Активная система охлаждения силовых приборов А. Анкудинов (ua3vvm)
  • Бездроссельный преобразователь напряжения12В в 15-27В 3А 16.11.2016
  • Бестрансформаторное зарядное устройство для аккумулятора 16.11.2016
  • Бестрансформаторный блок питания большой мощности для любительского передатчика 16.11.2016
  • Бестрансформаторный блок питания на полевом транзисторе (BUZ47A) 16.11.2016
  • Бестрансформаторный блок питания с регулируемым выходным напряжением 16.11.2016
  • Бестрансформаторный преобразователь напряжения (5-10В) 16.11.2016
  • Бестрансформаторный преобразователь напряжения 10В 250мА 16.11.2016
  • Бестрансформаторный стабилизированный источник питания на КР142ЕН8 16.11.2016
  • Блок защиты радиоаппаратуры с питанием от 12В 16.11.2016
  • Блок защиты электронных схем по питанию 16.11.2016
  • Блок отключения нагрузки БОН-04 Маврычев Александр
  • Блок питания 13,8В 25А Igor Ilchenko, 27.01.2015
  • Блок питания 0-12В/300мА 16.11.2016
  • Блок питания 1,2-30В 0-7А G. Shilke
  • Блок питания 1-29В/2А (КТ908) 16.11.2016
  • Блок питания 12В 6А (КТ827) 16.11.2016
  • Блок питания 3-30В с током нагрузки до 40-50А G. Shilke
  • Блок питания 60В 100мА 16.11.2016
  • Блок питания автомобильной радиостанции (13.8В, ЗА ) 16.11.2016
  • Блок питания для аналоговых и цифровых микросхем 16.11.2016
  • Блок питания для двух малогабаритных низковольтных паяльников с различными напряжениями питания Сергей Чернов
  • Блок питания для ионизатора (Люстра Чижевского) 16.11.2016
  • Блок питания для персонального компьютера «РАДИО 86 РК» 16.11.2016
  • Блок питания для телевизора 250В 16.11.2016
  • Блок питания для трансивера Alex RK9UC
  • Блок питания для трансивера Николай Шадрин, RZ4HX
  • Блок питания для трансивера 13.8В. 22А. Давид Девдариани 4L1DA
  • Блок питания на ТВК-110 ЛМ 5-25В/1А 16.11.2016
  • Блок питания с автоматическим зарядным устройством на компараторе 16.11.2016
  • Блок питания с гасящим конденсатором 16.11.2016
  • Блок питания СИ-БИ радиостанции (142ЕН8, КТ819) 16.11.2016
  • Блок питания Ступенька 5 — 9 — 12В на ток 1A 16.11.2016
  • Блок питания усилителя ЗЧ (18В, 12В) 16.11.2016
  • БП для трансивера из компьютерного источника питания AT/ATX Давид Девдариани 4L1DA
  • Быстродействующая защита от помех в радиоаппаратуре 16.11.2016
  • Быстродействующий стабилизатор с pnp-транзистором 16.11.2016
  • Быстродействующий электронный предохранитель 16.11.2016
  • Вариант источника питания для импортного трансивера из компьютерного БП AT/ATX Николай RZ4HX
  • Варианты исполнения схем стабилизации Сергей Чернов
  • Выпрямители для получения двуполярного напряжения 3В, 5В, 12В, 15В и других 16.11.2016
  • Выпрямитель для питания конструкций на радиолампах (9В, 120В, 6,3В) 16.11.2016
  • Выпрямитель с малым уровнем пульсаций 16.11.2016
  • Высоковольтные генераторы напряжения с емкостными накопителями энергии 16.11.2016
  • Высоковольтные источники питания Alexandr Lyalyuk, 03.09.2013
  • Высоковольтный преобраззователь 220В- 10кВ 16.11.2016
  • Высоковольтный преобразователь 8-16кВ 16.11.2016
  • Высоковольтный преобразователь напряжения с регулировкой 16.11.2016
  • Высококачественный блок питания на транзисторах (0-12В) 16.11.2016
  • Высокоэффективное зарядное устройство для аккумуляторов 16.11.2016
  • Высокоэффективное зарядное устройство для батарей DeadMazay
  • Высокоэффективный импульсный преобразователь напряжения 5в/4в 16.11.2016
  • Гаражный выпрямитель для постоянной подзарядки аккумулятора alex kiverin
  • Генераторы высокого напряжения с использованием катушек индуктивности 16.11.2016
  • Два бестрансформаторных блока питания 16.11.2016
  • Два напряжения от одной обмотки трансформатора 16.11.2016
  • Два разнополярных напряжения от одного источника 12В 16.11.2016
  • Двуполярное напряжение из однополярного 27В в  2х12В 16.11.2016
  • Двуполярное напряжение от одной обмотки трансформатора 16.11.2016
  • Двуполярный источник питания 12В/0,5А (К142ЕН1Г,КТ805) 16.11.2016
  • Двуполярный источник питания для УНЧ на TDA2030, TDA2040 (18В) 16.11.2016
  • Двуполярный стабилизатор на основе однополярной микросхемы 15В (142ЕН8, К140УД7) 16.11.2016
  • Двуполярный стабилизатор напряжения (1-5В, 2А) 16.11.2016
  • Двухканальный источник питания мощностью 20W для высокотемпературных применений. Геннадий Бандура
  • Двухканальный неизолированный промышленный источник питания на микросхеме TNY266P. Геннадий Бандура
  • Двухполярные стабилизаторы напряжения для микроконтроллеров 16.11.2016
  • Двухтактный преобразователь напряжения на полевых транзисторах 16.11.2016
  • Зарядно-питающее устройство для портативной аудио / mp3 аппаратуры. Геннадий Бандура
  • Зарядно-пусковое устройство Старт УПЗУ-У3 Валерий , 11.03.2017
  • Зарядно-пусковое устройство-автомат для автомобильного аккумулятора 12В 16.11.2016
  • Зарядно-разрядное устройство для аккумуляторов емкостью до 55Ач 16.11.2016
  • Зарядное устройство для Ni-Cd аккумуляторов 16.11.2016
  • Зарядное устройство 2W на базе микросхемы серии LinkSwitch-LP. Геннадий Бандура
  • Зарядное устройство \»Рассвет-2\» Павел
  • Зарядное устройство для автомобильного аккумулятора KT315
  • Зарядное устройство для автомобильного аккумулятора 16.11.2016
  • Зарядное устройство для автомобильного аккумулятора без соблюдения полярности Черепанов Андрей Николаевич
  • Зарядное устройство для аккумулятором с током заряда 300 мА 16.11.2016
  • Зарядное устройство для мобильного телефона на микросхеме LNK520P. Геннадий Бандура
  • Зарядное устройство для никель-кадмиевых аккумуляторов (0,5 -1А/ч) 16.11.2016
  • Зарядное устройство для никель-кадмиевых и никель-металлогидридных аккумуляторов Андрей Шарый
  • Зарядное устройство на основе импульсного инвертора (К1114ЕУ4, КТ886) 16.11.2016
  • Зарядное устройство с таймером для Ni-Cd аккумуляторов 16.11.2016
  • Зарядное устройство с температурной компенсацией 16.11.2016
  • Защита блока питания от короткого замыкания 16.11.2016
  • Защита для устройств, питающихся от сети 220 В 16.11.2016
  • Защита низковольтных цепей постоянного тока 16.11.2016
  • Защита питания микроконтроллера от помех 16.11.2016
  • Защита радиоаппаратуры от повышения напряжения в сети 220V 16.11.2016
  • Звуковой индикатор разряда 12V аккумулятора Сергей Чернов
  • Звуковой сигнализатор перегрузки блока питания 16.11.2016
  • Звуковой сигнализатор пропадания сетевого напряжения 16.11.2016
  • Измеритель заряда для автомобильного аккумулятора 16.11.2016
  • Импульсные источники питания на микросхемах и транзисторах 16.11.2016
  • Импульсные источники питания, теория и простые схемы 16.11.2016
  • Импульсные стабилизаторы напряжения на микросхемах и транзисторах 16.11.2016
  • Импульсный блок питания 5В 0,2А 16.11.2016
  • Импульсный блок питания из сгоревшей энергосберегающей лампочки Wlad , 30.07.2015
  • Импульсный блок питания на транзисторах и таймер на КР512ПС10 (12В-1,2А) 16.11.2016
  • Импульсный блок питания с регулятором напряжения 1….32 V мощностью 200ватт Евгений
  • Импульсный блок питания УМЗЧ мощностью 800Вт (ЛА7, ЛА8, ТМ2, КП707В2) 16.11.2016
  • Импульсный блок питания УНЧ 4х30В 200Вт 16.11.2016
  • Импульсный источник питания (5В 6А) 16.11.2016
  • Импульсный источник питания 12W на микросхеме TNY278P (TinySwitch-III). Геннадий Бандура
  • Импульсный источник питания 20 Bт Сергей Чернов
  • Импульсный источник питания 5V 5A Сергей Чернов
  • Импульсный источник питания ATX Сергей Чернов
  • Импульсный источник питания мощностью 32W/81W(пиковая) на микросхеме PKS606 от Power Integrations. Геннадий Бандура
  • Импульсный источник питания на 40 Вт 16.11.2016
  • Импульсный источник питания на микросхеме LNK562P мощностью 1.6 W с напряжением пробоя 10 kV. Геннадий Бандура
  • Импульсный источник питания на микросхеме КР1033ЕУ10 (27В, 3А) 16.11.2016
  • Импульсный источник питания персональных компьютеров ATX на базе SG6105 Сергей Чернов
  • Импульсный источник питания с полумостовым преобразователем (КР1156ЕУ2) 16.11.2016
  • Импульсный источник питания УМЗЧ Сергей Чернов
  • Импульсный источник питания УМЗЧ (60В) 16.11.2016
  • Импульсный маломощный источник питания 5V 0.5A Сергей Чернов
  • Импульсный понижающий стабилизатор 5-30В 4А 16.11.2016
  • Импульсный понижающий стабилизатор на ИМС LT1074 16.11.2016
  • Импульсный преобразователь напряжения с 12В на 220В 50Гц 16.11.2016
  • Импульсный сетевой блок питания 9В 3А (КТ839) 16.11.2016
  • Импульсный сетевой блок питания УМЗЧ 2х25В, 20В, 10В 16.11.2016
  • Импульсный стабилизатор 12В 4,5А 16.11.2016
  • Импульсный стабилизатор напряжения (вход 8-60В. выход 5В) 16.11.2016
  • Импульсный стабилизатор напряжения 0-25В (КР1006Ви1) 16.11.2016
  • Импульсный стабилизатор напряжения 12В/4А (142ЕН8, КТ819) 16.11.2016
  • Импульсный стабилизатор напряжения 5В 2А 16.11.2016
  • Импульсный стабилизатор напряжения на КТ825 16.11.2016
  • Импульсный стабилизатор напряжения с высоким КПД 5В 2А (142ЕП2, КТ907) 16.11.2016
  • Инвертор полярности напряжения 12В 16.11.2016
  • Инверторы полярности напряжения (- + / + -) 16.11.2016
  • Индикатор ёмкости батарей 16.11.2016
  • Индикатор перегорания предохранителя 16.11.2016
  • Интегральные стабилизаторы для микроконтроллеров 16.11.2016
  • Использование блоков питания старых ПК для питания трансиверов Кандауров Виктор
  • Источник для автомобильного трансивера Сергей UA9OTY
  • Источник питания 1,2в для активных нагрузок GTL-логики 16.11.2016
  • Источник питания 1,5-30В, 4,5 A Сергей Петров RA4FLS
  • Источник питания для автомобильного трансивера 13В 20А 16.11.2016
  • Источник питания для гибридного (лампы, транзисторы) трансивера 16.11.2016
  • Источник питания для детских электрофицированных игрушек 12В 16.11.2016
  • Источник питания для измерительного прибора на микросхемах 16.11.2016
  • Источник питания для измерительных приборов 16.11.2016
  • Источник питания для компьютера 16.11.2016
  • Источник питания для логических микросхем (5В) 16.11.2016
  • Источник питания для прибора Ф4320 Валерий , 06.12.2020
  • Источник питания для трехвольтовых аудиоплейеров 16.11.2016
  • Источник питания для УНЧ на TOPSwitch Геннадий Бандура
  • Источник питания для часов на БИС 16.11.2016
  • Источник питания на базе импульсного компьютерного БП (5-15В, 1-10А) 16.11.2016
  • Источник питания повышенной мощности 12В 20А (142ЕН5+транзисторы) 16.11.2016
  • Источник питания повышенной мощности 14 В, 100 Ватт 16.11.2016
  • Источник питания с плавной инверсией выходного напряжения +/-5В 16.11.2016
  • Источник питания с плавным изменением полярности +/- 12В 16.11.2016
  • Источник питания со стабилизацией на UL7523 (3В) 16.11.2016
  • Источник питания электронного звонка от сети Сергей Чернов
  • Источник повышенного напряжения 12В в 2х30В 16.11.2016
  • Источник резервного питания для АОН 16.11.2016
  • Источники питания для варикапа 16.11.2016
  • Источники питания конструктива ATX для компьютеров Юрий Гончаров, Анатолий Орехов
  • Источники питания стандарта ATX (250-450 Вт) Сергей
  • Как защиить домашнюю радиоаппаратуру от помех 16.11.2016
  • Как работают импульсные преобразователи напряжения (27 схем) 16.11.2016
  • Квазирезонансные преобразователи с высоким КПД 16.11.2016
  • Комбинированный блок питания 0-215В/0-12В/0,5А 16.11.2016
  • Комбинированный лабораторный блок питания 4-12V/1.5A (К140УД6,КП901) 16.11.2016
  • Компьютерный блок питания в качестве источника напряжения для современных импортных трансиверов Роман Таршиш RU3UJ
  • Компьютерный источник питания на микросхемах TOP249Y и TNY266P компании Power Integrations. Геннадий Бандура
  • Компьютерный источник питания на микросхемах TOP249Y и TNY266P компании Power Integrations. Геннадий Бандура
  • Конденсаторно-стабилитронный выпрямитель 16.11.2016
  • Конденсаторынй преобразователь напряжения 16.11.2016
  • Критерии надежности источника питания на микросхемах Power Integrations. Геннадий Бандура
  • Лабораторный блок питания для рабочего места (3-18В 4А) 16.11.2016
  • Лабораторный блок питания с регулируемым напряжением от 5 до 100В (0,2А) 16.11.2016
  • Лабораторный источник питания на микросхеме LM324 (0-30 В, 1 А) 16.11.2016
  • Линейные стабилизаторы напряжения на транзисторах и ОУ 16.11.2016
  • Линейные стабилизаторы напряжения с высоким КПД 16.11.2016
  • Малогабаритное универсальное зарядное устройство для аккумуляторов 16.11.2016
  • Маломощные бестранформаторные преобразователи напряжения на конденсаторах (18 схем) 16.11.2016
  • Маломощный источник питания (9В, 70мА) 16.11.2016
  • Маломощный конденсаторный выпрямитель с ШИМ стабилизатором 16.11.2016
  • Маломощный регулируемый двуполярный источник питания (LM317, LM337) 16.11.2016
  • Маломощный сетевой блок питания (9В) 16.11.2016
  • Маломощный сетевой источник питания — выпрямитель на 9В 16.11.2016
  • Микромощный инвертирующий преобразователь на на микросхеме LTC1144 16.11.2016
  • Микромощный повышающий преобразователь 16.11.2016
  • Миниатюрный импульсный блок питания 5…12 В 16.11.2016
  • Миниатюрный импульсный сетевой блок питания 5В 0,5А 16.11.2016
  • Миниатюрный сетевой блок питания (5В, 200мА) 16.11.2016
  • Мощные повышающие инверторы напряжения 16.11.2016
  • Мощный DC-DC преобразователь на микросхеме DPA Геннадий Бандура
  • Мощный бестрансформаторный преобразователь напряжения 30В 2А 16.11.2016
  • Мощный блок питания для усилителя НЧ (27В/3А) 16.11.2016
  • Мощный блок питания на напряжение 5-35В и ток 5A-30A и более (LM338, 741) 16.11.2016
  • Мощный импульсный блок питания для УНЧ (2х50В, 12В) 16.11.2016
  • Мощный импульсный стабилизатор с высоким КПД 8-16В 10А 16.11.2016
  • Мощный источник питания на составных транзисторах 0-15В 20А (КТ947, КТ827) 16.11.2016
  • Мощный лабораторный источник питания 0-25В, 7А 16.11.2016
  • Мощный малогабаритный преобразователь напряжения (12В в 30-50В) 16.11.2016
  • Мощный преобразователь 12В — 350В на микросхеме 1114ЕУ4 16.11.2016
  • Мощный преобразователь напряжения 12 В 16.11.2016
  • Мощный преобразователь напряжения 12 вольт в 220 вольт, 180 Вт Синицкий В.К
  • Мощный регулятор сетевого напряжения 220В 16.11.2016
  • Мощный стабилизатор напряжения (5..30V / 5A) 16.11.2016
  • Мощный стабилизатор напряжения -5В 4А (L7905) 16.11.2016
  • Мощный стабилизатор напряжения 5-30В 5А (140УД7, КТ818) 16.11.2016
  • Мощный стабилизатор с защитой по току 50В 5А (140УД20, КТ827) 16.11.2016
  • Мощный стабилизированный инвертор напряжения на 90Вт 16.11.2016
  • Мощный тиристорный преобразователь 12В в 220В (500Вт) 16.11.2016
  • Мощный электронный сетевой трансформатор для магнитолы и радиостанции на 12В 16.11.2016
  • Мультиклассовый Power-over-Ethernet источник питания 6.6W на микросхеме DPA423G (отладочный набор DA Геннадий Бандура
  • Мультиплексорные преобразователи напряжения на микросхемах и конденсаторах 16.11.2016
  • Недорогой вариант импульсного источника питания для электросчетчика. Геннадий Бандура
  • Неизолированные повышающие преобразователи мощностью 20W и 30W с постоянным выходным током на микрос Геннадий Бандура
  • Неизолированный BUCK-BOOST преобразователь 0,5Вт на микросхеме LNK302P Геннадий Бандура
  • Несложные конструкции регуляторов мощности Сергей Чернов
  • Несложный преобразователь 12В — 220В на транзисторах 16.11.2016
  • Низковольтные преобразователи напряжения для светодиодов 16.11.2016
  • Низковольтный преобразователь напряжения 2В в 5В 16.11.2016
  • Низковольтный стабилизатор напряжения 3-5В/0,4А (КР142ЕН19,КТ814) 16.11.2016
  • Обзор схем восстановления заряда у батареек 16.11.2016
  • Обратимый преобразователь напряжения (3,6В в 10В) 16.11.2016
  • Ограничитель напряжения 115-180V Виктор Онищук
  • Ограничитель пускового тока при включении радиоаппаратуры 16.11.2016
  • Ограничитель сетевого напряжения Александр Фролов
  • Однополярный источник питания УНЧ (40В) 16.11.2016
  • Оповещение о пропадании сети 220В 16.11.2016
  • Параллельное включение стабилизаторов 142ЕН5 16.11.2016
  • Параметрические стабилизаторы напряжения для микроконтроллеров 16.11.2016
  • Переделка блока питания для ПК POWER MAN IW-P350 в блок питания для трансивера 13,8V 22А Дергаев Э.Ю. UA4NX
  • Переделка источника питания ATX в AT Евгений Лисовой
  • Переключаемые конденсаторы в преобразователе полярности напряжения 16.11.2016
  • Питание будильника 1,5В от сети 220В 16.11.2016
  • Питание микроконтролерных устройств от сети 220В 16.11.2016
  • Питание микроконтроллеров от сети 220В через трансформатор 16.11.2016
  • Питание микроконтроллеров от телефонной линии 16.11.2016
  • Питание низковольтной радиоаппаратуры от сети 16.11.2016
  • Питание часов-будильника 1,5В от автомобильной бортовой сети 16.11.2016
  • Повышающий преобразователь с накачкой заряда (5В, 20мА) 16.11.2016
  • Повышающий преобразователь с накачкой заряда на 20В 16.11.2016
  • Повышающий стабилизатор Исаев Александр
  • Поддержание аккумуляторов в рабочем состоянии Григоров Игорь Николаевич
  • Подключение таймера к зарядному устройству аварийного аккумулятора 16.11.2016
  • Полупроводниковые аналоги стабилитронов 16.11.2016
  • Последовательный стабилизатор с ограничением тока 16.11.2016
  • Преборазователи 12 в 18В, 12 в 30В (LM555) 16.11.2016
  • Преобразователи напряжения (4В в 15В) 16.11.2016
  • Преобразователи напряжения на коммутируемых и модулируемых конденсаторах (13 схем) 16.11.2016
  • Преобразователи напряжения с повышающим трансформатором (К176ЛА7) 16.11.2016
  • Преобразователи постоянного напряжения в переменное 16.11.2016
  • Преобразователь (инвертор) напряжения 12В в 220В 16.11.2016
  • Преобразователь 12 В в 220 В Николай Яковлев
  • Преобразователь 12В в 220В на микросхеме и транзисторах 16.11.2016
  • Преобразователь для маломощной люминесцентной лампы (LM555) 16.11.2016
  • Преобразователь для ПДУ 1,5В в 9В 5мА 16.11.2016
  • Преобразователь для энергосберегающей лампы (2 транзистора) 16.11.2016
  • Преобразователь на 5в с питанием от 4 элементов 16.11.2016
  • Преобразователь на 5в с питанием от двух батарей 16.11.2016
  • Преобразователь напряжения (5В в 8.5В) 16.11.2016
  • Преобразователь напряжения 12 — 30В на микросхеме 1006ВИ1 16.11.2016
  • Преобразователь напряжения 12В — 22В 16.11.2016
  • Преобразователь напряжения 12В в 220В для походов 16.11.2016
  • Преобразователь напряжения 12В в 220В на 561ИЕ8, КП723 16.11.2016
  • Преобразователь напряжения 12В-220В (100Вт) 16.11.2016
  • Преобразователь напряжения 3,3В в 12В с частотой 500 кГц 16.11.2016
  • Преобразователь напряжения 40В в 5В с током нагрузки 10А 16.11.2016
  • Преобразователь напряжения 5В — 9В для питания мультиметра от USB 16.11.2016
  • Преобразователь напряжения 5В в 3,3В с кпд 95% 16.11.2016
  • Преобразователь напряжения 6-25В в 5В на ток 1,25А 16.11.2016
  • Преобразователь напряжения 70В / 5В с током нагрузки 700мА 16.11.2016
  • Преобразователь напряжения 9 В в 400 В 16.11.2016
  • Преобразователь напряжения DC/DC +400В для счетчика Гейгера (MC34063) 16.11.2016
  • Преобразователь напряжения для авометра Ц20 16.11.2016
  • Преобразователь напряжения для автомобиля (35,40,127,115,220В) 16.11.2016
  • Преобразователь напряжения для питания варикапов 16.11.2016
  • Преобразователь напряжения для питания газоразрядных индикаторов 16.11.2016
  • Преобразователь напряжения для радиоуправляемой модели 16.11.2016
  • Преобразователь напряжения для электробритвы 12В — 220В 16.11.2016
  • Преобразователь напряжения на ИМС K155ЛA13 (200В) 16.11.2016
  • Преобразователь напряжения на микросхеме и транзисторах (9В в 16В) 16.11.2016
  • Преобразователь напряжения на одном транзисторе (250В, 1Вт) 16.11.2016
  • Преобразователь напряжения на полевых транзисторах 12В / 220В DeadMazay
  • Преобразователь напряжения с малым уровнем помех 16.11.2016
  • Преобразователь напряжения с ШИ модуляцией (3-12В в 9В) 16.11.2016
  • Преобразователь однофазного напряжения 220В в трехфазное 16.11.2016
  • Преобразователь полярности напряжения (+ -) на К176ЛА7 16.11.2016
  • Прецизионное зарядное устройство для аккумуляторов 16.11.2016
  • Приставка-контроллер к зарядному устройству аккумулятора 12В 16.11.2016
  • Приставка-регулятор к зарядному устройству аккумулятора 16.11.2016
  • Простейшие пусковые устройства 12В для авто на основе ЛАТРа 16.11.2016
  • Простое зарядное устройство для автомобильного аккумулятора (ток 1,5А) 16.11.2016
  • Простое зарядное устройство для аккумуляторов (до 55Ач) 16.11.2016
  • Простое зарядное устройство для аккумуляторов и батарей 16.11.2016
  • Простое зарядное устройство для сотового телефона. Геннадий Бандура
  • Простое малогабаритное автоматическое зарядное устройство для пальчиковых аккумуляторов Сергей Чернов
  • Простой автоматический выключатель нагрузки от сети 220В 16.11.2016
  • Простой блок питания 5В/0,5А (КТ807) 16.11.2016
  • Простой двуполярный источник питания (14-20В, 2А) 16.11.2016
  • Простой и высокоэффективный промышленный источник питания на микросхеме LNK520P. Геннадий Бандура
  • Простой и мощный инвертор напряжения 12В — 220В (CD4060, 2SK2956, 2SJ471) 16.11.2016
  • Простой импульсный блок питания мощностью 15Вт 16.11.2016
  • Простой импульсный блок питания на ИМС 16.11.2016
  • Простой импульсный источник питания 5В 4А 16.11.2016
  • Простой импульсный преобразователь напряжения из 6В в 12В (BC547, BD679) 16.11.2016
  • Простой импульсный стабилизатор напряжения 5В/0,7А (КТ805Б) 16.11.2016
  • Простой источник двуполярного напряжения для ОУ 16.11.2016
  • Простой источник резервного питания на основе транзисторе КТ825 16.11.2016
  • Простой ключевой стабилизатор напряжения 15-25В 4А 16.11.2016
  • Простой преобразователь 12 — 220В Андрей Шарый
  • Простой преобразователь напряжения 12В-220В для бритвы (К561ТМ2, КТ805) 16.11.2016
  • Простой преобразователь напряжения 5в/3,3в 16.11.2016
  • Простой регулятор мощности Константин Романов
  • Простой регулятор мощности 3,5 кВт Шашарин Сергей Анатольевич г. Ульяновск , 01.01.2012
  • Простой самодельный инвертор напряжения 12-220В на двух транзисторах 16.11.2016
  • Простой стабилизатор 14V / 20A Юрко Стрелков-Серга UT5NC
  • Простой стабилизатор напряжения на 142ЕН1Г+КТ903 (9В/0,5А) 16.11.2016
  • Простой стабилизатор напряжения с защитой от КЗ 15-38В/3А 16.11.2016
  • Простые автогенераторные преобразователи напряжения на транзисторах 16.11.2016
  • Пьезоэлектрические трансформаторы в схемах преобразователей напряжения 16.11.2016
  • Пятивольтовый блок питания с ШИ стабилизатором 16.11.2016
  • Регулировка скорости электродвигателей переменного тока 16.11.2016
  • Регулируемый биполярный блок питания с микроконтроллером Якименко Сергей, UT2HI
  • Регулируемый блок питания на ОУ LM324 (0-30В, 2А) 16.11.2016
  • Регулируемый двуполярный источник питания 12В(2х6В)/2А 16.11.2016
  • Регулируемый двуполярный источник питания из однополярного 16.11.2016
  • Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А) 16.11.2016
  • Регулируемый источник питания на LM317T (1-37В 1,5А) 16.11.2016
  • Регулируемый источник питания на ток до 1 А (К142ЕН12А) 16.11.2016
  • Регулируемый преобразователь напряжения 2-15В 1А 16.11.2016
  • Регулируемый стабилизатор напряжения 18-32В 3А (LM317, 2N3792) 16.11.2016
  • Регулируемый стабилизатор тока 16В/7А (140УД1, КУ202) 16.11.2016
  • Регулируемый электронный предохранитель 16.11.2016
  • Регулятор к двуполярному источнику питания (6В) 16.11.2016
  • Регулятор мощности не создающий помех (176ЛЕ5, КУ202) 16.11.2016
  • Регулятор напряжения с ограничителем тока 16.11.2016
  • Регуляторы заряда аккумуляторов от солнечных батарей 16.11.2016
  • Резервное электропитание для дома 16.11.2016
  • Резервный источник питания 21W на микросхеме TNY280P (TinySwitch-III). Геннадий Бандура
  • Резервный источник питания 220В 16.11.2016
  • Релейный стабилизатор напряжения 16.11.2016
  • Самовосстанавливающийся предохранитель 16.11.2016
  • Самодельное пусковое устройство Валерий , 25.06.2017
  • Самодельный лабораторный источник питания с регулировкой 0-20В 16.11.2016
  • Сверхэкономичный стабилизатор напряжения 9В/50мА 16.11.2016
  • Свинцово-кислотный аккумулятор и схема зарядного устройства Валерий , 01.06.2017
  • Сетевая «Крона» 9В/25мА 16.11.2016
  • Сетевой адаптер с выходной мощностью 2 Вт на микросхеме LNK362P. Геннадий Бандура
  • Сетевой фильтр — простая схема Валерий , 31.03.2017
  • Сигнализатор перегорания предохранителя (176ЛА7) 16.11.2016
  • Сигнализаторы отсутствия напряжения 16.11.2016
  • Симметричный динистор в бестрансформаторном блоке питания 16.11.2016
  • Система переключения питания низковольтных устройств 16.11.2016
  • Система питания с детектором разряда аккумулятора 16.11.2016
  • Система управления резервным питанием на микросхеме MAX933 16.11.2016
  • Способ намотки тороидальных трансформаторов UA3VFS
  • Стабилизатор для БП трансивера 13.8V / 30A RZ9AE — Виктор
  • Стабилизатор напряжения (15-38В) с защитой от короткого замыкания 16.11.2016
  • Стабилизатор напряжения 10В/1А с полевым транзистором 16.11.2016
  • Стабилизатор напряжения 12В (К142ЕН2) 16.11.2016
  • Стабилизатор напряжения 12В/1А (КТ817) 16.11.2016
  • Стабилизатор напряжения 20В 7А (BC558, BUZ11) 16.11.2016
  • Стабилизатор напряжения 9В/0,5А (КП903) 16.11.2016
  • Стабилизатор напряжения велофары 16.11.2016
  • Стабилизатор напряжения для автомобильного аккумулятора 9В/300мА 16.11.2016
  • Стабилизатор напряжения для питания УМЗЧ 16.11.2016
  • Стабилизатор напряжения для УНЧ 12-15В/0,7А 16.11.2016
  • Стабилизатор напряжения для устройств с питанием от сети до 200Вт 16.11.2016
  • Стабилизатор напряжения на компараторе (5В, 2А) 16.11.2016
  • Стабилизатор напряжения на компараторе 5В 2А (554СА3, КТ908) 16.11.2016
  • Стабилизатор напряжения на мощном полевом транзисторе 13В (IRLR2905) 16.11.2016
  • Стабилизатор напряжения на ОУ 25В/0,5А (К140УД1А,П702) 16.11.2016
  • Стабилизатор напряжения переменного тока 16.11.2016
  • Стабилизатор напряжения с внешними регулирующими транзисторами 5-12В/1-3А 16.11.2016
  • Стабилизатор напряжения с высоким коэффициентом стабилизации 5В/0,5А 16.11.2016
  • Стабилизатор напряжения с выходным напряжением повышенной стабильности 16.11.2016
  • Стабилизатор напряжения с защитой 14-20В/0,5А (КТ825) 16.11.2016
  • Стабилизатор напряжения с защитой от КЗ (2-12В/0,3А) 16.11.2016
  • Стабилизатор напряжения с защитой от короткого замыкания 9В (П217) 16.11.2016
  • Стабилизатор напряжения с логическими элементами 5В 16.11.2016
  • Стабилизатор напряжения со ступенчатым включением 12В (142ЕН5А) 16.11.2016
  • Стабилизатор напряжения, защищенный от повреждения разрядным током конденсаторов 16.11.2016
  • Стабилизатор с высоким коэффициентом стабилизации (142ЕН5А, К140УД7) 16.11.2016
  • Стабилизатор с полевым транзистором 9В/150мА (КП903,551УД1) 16.11.2016
  • Стабилизатор с регулируемым выходным напряжением (142ЕН5, К140УД7) 16.11.2016
  • Стабилизатор тока для зарядки батареи 6В (142ЕН5А) 16.11.2016
  • Стабилизаторы напряжения с малым током потребления (КР1014КТ1) 16.11.2016
  • Стабилизированный блок питания 3-12В/0,25А (142ЕН12А) 16.11.2016
  • Стабилизированный блок питания на 60 вольт. Синицкий В.К., Первомайский УЭС
  • Стабилизированный источник питания 40В/1,2А (КТ803) 16.11.2016
  • Стабилизированный источник питания с автоматической защитой от коротких замыканий 16.11.2016
  • Стабилизированный лабораторный источник питания (0-27В, 500мА) 16.11.2016
  • Стабилизированный сетевой преобразователь напряжения 16.11.2016
  • Схема автоматического зарядного устройства (на LM555) 16.11.2016
  • Схема автоматического зарядного устройства для аккумуляторов 12В 16.11.2016
  • Схема автоматического зарядного устройства для сотовых телефонов 16.11.2016
  • Схема блока питания AT Виктор Онищук
  • Схема блока питания и зарядного устройства для iPod Сергей Милюшин UR3ID, 22.03.2012
  • Схема блока питания и согласующего устройства для ICOM 718 Сергей UR3ID
  • Схема блока питания с напряжением 12В и током 6А 16.11.2016
  • Схема высоковольтного преобразователя (вход 12В, вых — 700В) 16.11.2016
  • Схема двухполярного стабилизатора из одной обмотки трансформатора (КТ827, КТ825) 16.11.2016
  • Схема зарядно-разрядного устройства с током 5А (КУ208, КТ315) 16.11.2016
  • Схема зарядного устройства для Li-Ion и Ni-Cd аккумуляторов 16.11.2016
  • Схема зарядного устройства для аккумулятора от GSM-телефона (LM317) 16.11.2016
  • Схема зарядного устройства для батарей 16.11.2016
  • Схема зарядного устройства с повышающим преобразователем 16.11.2016
  • Схема защиты источника питания от перегрузок (КР544УД2, КУ101) 16.11.2016
  • Схема защиты радиоаппаратуры от повышенного напряжения питания 16.11.2016
  • Схема и конструкция простого сетевого фильтра для радиоаппаратуры 16.11.2016
  • Схема измерителя выходного сопротивления батарей 16.11.2016
  • Схема импульсного стабилизатора для зарядки телефона 16.11.2016
  • Схема инвертора напряжения 12В — 220 В 16.11.2016
  • Схема инвертора напряжения на тринисторах КУ201 (12В — 220В) 16.11.2016
  • Схема источника питания 12В, с током в нагрузке до 10 А 16.11.2016
  • Схема ключевого стабилизатора напряжения (5В, 2 А) 16.11.2016
  • Схема контроллера заряда батарей 16.11.2016
  • Схема маломощного широкодиапазонного стабилизатора напряжения 16.11.2016
  • Схема мощного стабилизатора тока на 100 — 200А (КР140УД20, КТ827) 16.11.2016
  • Схема непрерывного подзаряда батарей 16.11.2016
  • Схема преобразователя напряжения из 3В в 9В 16.11.2016
  • Схема преобразователя напряжения 9В в двуполярное 5В 16.11.2016
  • Схема простого зарядного устройства на диодах 16.11.2016
  • Схема пятивольтовогго блока питания с ШИ стабилизатором 16.11.2016
  • Схема релейного стабилизатора напряжения на транзисторах 16.11.2016
  • Схема сверхэкономичного стабилизатора напряжения (9В) 16.11.2016
  • Схема стабилизатора напряжения 12В 1А 16.11.2016
  • Схема стабилизатора напряжения с регулировкой от 0 до 10 Вольт 16.11.2016
  • Схема стабилизатора с высоким коэффициентом стабилизации 16.11.2016
  • Схема стабилизированного источника питания 40В, 1.2А 16.11.2016
  • Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713) 16.11.2016
  • Схема универсального лабораторного источника питания 16.11.2016
  • Схема устройства для подзаряда батарей 16.11.2016
  • Схема электронного предохранителя на двух транзисторах 16.11.2016
  • Схема электронного предохранителя на оптроне с высоким быстродействием (до 10А) 16.11.2016
  • Схемы автоматической защиты трехфазного двигателя при пропадании фазы 16.11.2016
  • Схемы бесперебойного питания для устройств на микроконтроллерах 16.11.2016
  • Схемы бестрансформаторного сетевого питания микроконтроллеров 16.11.2016
  • Схемы бестрансформаторных зарядных устройств 16.11.2016
  • Схемы защиты микроконтроллеров от смены полярности питания 16.11.2016
  • Схемы защиты устройств от всплесков тока и напряжения 16.11.2016
  • Схемы маломощных стабилизаторов напряжения (5В, до 1А) 16.11.2016
  • Схемы нетрадиционных источников питания для микроконтроллеров 16.11.2016
  • Схемы питания микроконтроллеров от разъёмов COM, USB, PS/2 (5-9В) 16.11.2016
  • Схемы питания микроконтроллеров от солнечных элементов 16.11.2016
  • Схемы подзарядки маломощных аккумуляторных батарей для питания МК 16.11.2016
  • Схемы простых выпрямителей для зарядки аккумуляторов 16.11.2016
  • Схемы светодиодных индикаторов перегрузки по току 16.11.2016
  • Таймер-индикатор разрядки батареи 16.11.2016
  • Тестер для оперативной проверки гальванических элементов Андрей Шарый
  • Тестовый блок нагрузок БП АТХ Шашарин Сергей Анатольевич г. Ульяновск, 22.03.2012
  • Тиристорное зарядное устройство на КУ202Е 16.11.2016
  • Транзисторный стабилизатор с защитой от КЗ 15-27В/3А 16.11.2016
  • Транзисторный фильтр для телевизора 16.11.2016
  • Трансформаторный преобразователь 220 В/220 В 16.11.2016
  • Трехканальный источник питания 10.5 W для телевизионной приставки. Геннадий Бандура
  • Трехфазный инвертор 16.11.2016
  • Узел аварийной защиты низковольтной радиоаппаратуры 16.11.2016
  • Узел защиты электрооборудования при авариях в электросети 16.11.2016
  • Универсальное зарядное устройство для маломощных аккумуляторов 16.11.2016
  • Универсальный блок питания с несколькими напряжениями 16.11.2016
  • Универсальный преобразователь напряжения 16.11.2016
  • Универсальный сетевой фильтр с защитой от перенапряжений 16.11.2016
  • Устройства для аварийной защиты от превышения сетевого напряжения 16.11.2016
  • Устройства для защиты стабилизаторов напряжения (24В, 0-27В) 16.11.2016
  • Устройство автоматической подзарядки аккумулятора Исаев Александр
  • Устройство для автоматической тренировки аккумуляторов 12В, 40-100Ач 16.11.2016
  • Устройство для заряда и формирования аккумуляторных батарей 6-12В, 85Ач 16.11.2016
  • Устройство для поддержания заряда батареи 6СТ-9 16.11.2016
  • Устройство для хранения никель-кадмиевых аккумуляторов 16.11.2016
  • Устройство защиты аппаратуры от перепадов напряжения в сети 220В 16.11.2016
  • Устройство защиты батарей видеокамер 16.11.2016
  • Устройство защиты галогенных ламп 16.11.2016
  • Устройство защиты нагрузки от высокого напряжения 16.11.2016
  • Устройство контроля заряда и разряда аккумулятора 12В 16.11.2016
  • Формирователь двуполярного напряжения 16.11.2016
  • Экономичный импульсный блок питания 2×25В 3,5А 16.11.2016
  • Экономичный источник питания с малой разницей входного и выходного напряжения 5В 1А 16.11.2016
  • Экономичный преобразователь напряжения для питания варикапов 16.11.2016
  • Экономичный стабилизатор напряжения 16.11.2016
  • Экономичный стабилизатор напряжения 5-12В/100мА (КТ608,КП305) 16.11.2016
  • Экономичный стабилизатор напряжения с полевыми транзисторами 16.11.2016
  • Экономичный стабилизатор напряжения сети (500Вт) 16.11.2016
  • Эксплуатация никелево-кадмиевых аккумуляторов (НКА) при повышенных разрядных токах Игорь Григоров RK3ZK
  • Электронный предохранитель на транзисторах 16.11.2016
  • Электронный сетевой (220В) предохранитель 16.11.2016
  • Электронный стабилизатор тока для зарядки аккумуляторных батарей 16.11.2016
  • Эффективный преобразователь напряжения 5В/3,3В 16.11.2016

Преобразователь с 12 В на 6 В — Коллекция Best 5 схем

Схемы простых схем преобразователя с 12 В на 6 В обсуждаются ниже. Эти схемы линейного преобразователя постоянного тока в постоянный можно использовать для преобразования всех типов источников питания 12 В в источники питания 6 В.

Редуктор ниже 12 В на 6 В может быть полезен в случае, если вы хотите заменить батарею 6 В на батарею 12 В или адаптер источника питания 12 постоянного тока.

Как снизить напряжение с 12В до 6В?

Схема линейного регулятора

с использованием LM7806 и LM317 помогает понизить или уменьшить потенциал батареи с 12 В до 6 В, чтобы использовать ее с любыми ИС, которые необходимо запитать с таким большим потенциалом.Рекомендуется использовать надежные линейные регуляторы / преобразователи мощности для эффективного функционирования и во избежание случайного отказа цепи.

Преобразователь 12В в 6В с LM7806:

LM7806 — это ИС стабилизатора постоянного напряжения, которая регулирует входное напряжение, используемое в электрической и электронной схеме.

Понижающий с 12 В до 6 В с IC LM7806 построен, как показано на схеме ниже. Обычно он используется для среднетоковых приложений от нескольких миллиампер и до 2 ампер.

Советы:
Рекомендуется подключить входной конденсатор «Cin» и выходной конденсатор «Co» к IC 7806 в соответствии с таблицей данных. Радиатор должен быть подключен к этой микросхеме регулятора, чтобы предотвратить его тепловое повреждение.

Существует вероятность выхода ИМС из строя, если не подключен радиатор. Разница напряжений между входами и выходами должна поддерживаться на уровне 2 Вольт. Технически это называется «выпадением напряжения».

Необходимые компоненты:
Источник питания 12 В, конденсатор 10 мкФ, конденсатор 0,1 мкФ, IC LM7806, радиатор, провода или разъемы.

Рабочий:

ИС спроектирована таким образом, чтобы ее можно было модифицировать для работы в качестве защиты от короткого замыкания для ваших критических цепей. Его также можно использовать в качестве регулятора тока в цепи.

LM7806 — это ИС серии LM78xx, все ИС этой серии предназначены для различных фиксированных выходных напряжений, но ее можно модифицировать для работы в качестве регулятора переменного напряжения.Эти типы ИС известны как ИС линейного регулятора. Даже эти микросхемы могут работать без каких-либо внешних компонентов, что снижает стоимость схемы.

LM7806 ИС линейного трансформатора. Цифры «xx » представляют значение выходного напряжения постоянного тока, в этой микросхеме 7806 IC выдает 6 В постоянного тока в виде цифры « xx » в последнем, читается как (06). Точность вывода составляет от 2% до 4%.

Контакт 1 — это входной контакт , Контакт 2 — контакт заземления , контакт Контакт 3 — выходной контакт , если смотреть как область печати, обращенную к человеку.

(номиналы конденсаторов могут отличаться в зависимости от области применения)

LM317 Преобразователь 12В в 6В:

Преобразователь постоянного тока 12В в 6В может быть изготовлен с помощью популярного регулятора напряжения IC LM317, поскольку эта ИС дает регулируемое выходное постоянное напряжение с некоторыми изменениями во внешней цепи. Он полезен для цепей среднего и высокого тока (от 1 до 1,5 ампер +)

Как правило, LM317 используется в цепях переменного тока, которые обеспечивают регулируемое напряжение (1.От 25 В до 37 В) при изменении напряжения на контакте № 1. Здесь схема делителя напряжения, используемая с LM317, дает фиксированное значение напряжения 9В.

Важно:
Предлагается добавить входной конденсатор Cin и выходной конденсатор Co (без этого конденсатора он работает, но регулирование может быть нарушено). Радиатор необходим для охлаждения микросхемы от выделяемого тепла, а также предотвращает ее повреждение.

Падение напряжения этой ИС очень низкое по сравнению с другими ИС, поэтому напряжение i / p должно быть не менее 1.5 В или больше, чем выходное напряжение, необходимое для работы этой ИС.

Необходимые компоненты:
Источник питания 12 В, резистор 1,8 кОм, резистор 6,8 кОм, конденсатор 10 мкФ, конденсатор 1,0 мкФ, микросхема LM317, прикрепленная к радиатору.

Рабочий:
LM317 — это универсальная ИС с функцией регулируемого регулирования напряжения и способная подавать стабилизированное напряжение….

(для получения более подробной информации о регуляторе LM317 и его работе перейдите по этой ссылке)

Формула для выходного напряжения имеет следующий вид:

Это формула для выходного напряжения редуктора от 12 В до 6 В с использованием LM317.Это дает приблизительно требуемый результат, когда R2 и R1 выбраны для приравнивания формулы. Учитывайте значение резисторов в килоомах, чтобы снизить энергопотребление.

Также проверьте стабилизатор с 12 В на 6 В, используя транзистор, указанный ниже, эта схема почти устарела, так как есть различные одиночные ИС, доступные для покупки и использования. Очень удобную и компактную схему можно реализовать с помощью современных решений.

Преобразователь с 12 В на 6 В с использованием резисторов в качестве делителя напряжения:

Схема, показанная ниже, представляет собой редуктор с 12 В на 6 В для цепи небольшого потребления тока или для измерения опорного напряжения в цепи компаратора или цепи для светодиодного индикатора .

Вы можете подключить несколько светодиодов последовательно через резистор R2 (1,2 кОм), если вы используете батарею на 12 В на входе. Вы можете взять вывод с резистора R1.

Этот тип схемы не так популярен среди производителей из-за низкого тока, поэтому не рекомендуется для использования в проектах.

Необходимые компоненты:

Одна батарея / источник питания 12 В, резистор 1,2 кОм, несколько проводов.

Это простая схема делителя напряжения.Вы можете получить необходимое напряжение по следующей формуле:

Где «Vo» — выходное напряжение постоянного тока. «Vin» — это нерегулируемое напряжение. Вам нужно выбрать номинал резистора R1 или R2 ( также зависит от импеданса нагрузки ) и решить для другого. Затем выберите ближайший к нему стандартный номинал полученного резистора.

Преобразователь 12В в 6В с использованием стабилитрона:

Схема понижающего преобразователя 12В в 6В, показанная ниже, основана на использовании стабилизатора напряжения Зенера, его можно использовать для (1-800 мА) цепи среднего тока, например.Светодиодные индикаторы в защите от перенапряжения по цепи напряжения.

Вы можете использовать эту схему преобразователя постоянного тока в постоянный с 12 В до 6 В с любой другой схемой, сняв напряжение на стабилитроне 6,2 В. На выходе получится ~ 6,2В.
(Обратите внимание, что это примерно 6 вольт, а не точные 6 вольт, используйте вышеуказанные схемы для точных 6 вольт, большинство устройств могут работать с допуском 2-4%, поэтому это также может работать)

Важно:
Нагрузка должна быть подключена к выходному концу регулятора, чтобы предотвратить возгорание стабилитрона.
Последовательный резистор Rs = 10 Ом является токоограничивающим резистором, и при подаче большого тока он будет проходить через него, поэтому необходим резистор мощностью 3 Вт.

Необходимые компоненты:
Источник 12 В, резистор 10 Ом (номинальная мощность важна, когда схема потребляет ток больше, чем несколько миллиампер), рекомендуется стабилитрон 6,2 В (1 Вт / 3 Вт / 5 Вт) с большей мощностью, какие-то провода или разъемы.

Рабочий:
Это общая схема стабилитрона как стабилизатора напряжения.

Разработайте стабилитрон на 6,2 В от источника питания постоянного тока 12 В. Максимальная номинальная мощность…

Для подробного расчета и формул выполните поиск по артикулу понижающего преобразователя с 12 В на 6 В в поле поиска в меню.

Преобразователь 12В в 9В с использованием транзистора:

загрузка… ..

Преобразователь 12В в 9В — Лучшие 5 схем

Ниже представлена ​​схема простых схем преобразователя 12В в 9В. Эти схемы преобразователя постоянного тока в постоянный можно использовать для преобразования всех типов источника питания 12 В в источник питания 9 В.

Эти схемы также могут использоваться для понижения или уменьшения потенциала батареи с 12 В до 9 В, чтобы использовать его с модулями микроконтроллеров или любыми ИС. Здесь в основном используются надежные линейные преобразователи мощности типа LM7809 и LM317.

Преобразователь 9В в 5В с LM7809:

LM7809 — это ИС стабилизатора напряжения, которая снижает и регулирует входное напряжение в электрических цепях.

Преобразователь регулятора напряжения 12В в 9В с микросхемой LM7809 реализован, как показано на схеме ниже.Его можно использовать для слаботочных приложений, а также для тока до 2 ампер и более.

Важно:
Подключите входной конденсатор «Cin» и выходной конденсатор «Co» к IC 7809. Радиатор необходим, поскольку падение напряжения в 3 вольта должно рассеиваться в виде тепла.

Существует большая вероятность выхода из строя ИС, если радиатор не подключен. Разница входного и выходного напряжения здесь составляет 3 вольта, что больше рекомендованного значения в 2.5Вольт.

Необходимые компоненты:
Аккумулятор 12 В / источник питания 12 В, конденсатор 100 мкФ, конденсатор 0,1 мкФ, IC LM7809, радиатор, провода и разъемы.

Рабочий:

ИС имеет множество встроенных функций, таких как тепловое отключение, защита от короткого замыкания и защита безопасной рабочей зоны.

LM7809 — это ИС серии LM78xx, все ИС этой серии предназначены для различных фиксированных выходных напряжений. Эти типы ИС обычно используются в регулируемых цепях питания.

LM7809 ИС линейного трансформатора. Цифры «xx » представляют значение регулируемого напряжения o / p. Микросхема 7809 выдает 9 В постоянного тока как цифра xx в последнем значении (09).

Контакт 1 — это входной контакт . Контакт 2 — это заземляющий контакт . Контакт 3 — это выходной контакт .

LM317 Преобразователь 12 В в 9 В:

Преобразователь 12 В в 9 В постоянного тока также может быть изготовлен с универсальным линейным регулятором напряжения IC LM317.Это полезно для цепей среднего и высокого тока (от 1 до 1,5 ампер +) с подходящим радиатором.

Обычно LM317 находится в цепях переменного питания, которые выдают регулируемое напряжение (от 1,25 В до 37 В) при изменении напряжения на контакте № 1. Здесь схема делителя напряжения, используемая с LM317, дает фиксированное значение напряжения 9В.

Важно:
Настаивают на добавлении входного конденсатора Cin (также конденсатора o / p Co). Радиатор необходим для охлаждения ИС от тепла, выделяемого внутри ИС.

Напряжение i / p должно быть не менее чем на 1,5 В выше номинального выходного напряжения, чтобы эта ИС работала, как описано.

Необходимые компоненты:
Аккумулятор 12 В / источник питания 12 В, резистор 2,2 кОм, резистор 300 Ом, конденсатор 100 мкФ, конденсатор 0,1 мкФ, IC LM317, радиатор.

Рабочий:
LM317 — это ИС регулируемого регулятора напряжения, способная обеспечивать более…

(для получения более подробной информации о регуляторе LM317 и его работе перейдите по этой ссылке)

Преобразователь 12В в 9В с использованием резисторов в качестве делителя напряжения:

Схема, показанная ниже, представляет собой схему для приложений с низким током (~ 20 мА) или для измерения опорного напряжения в схеме компаратора или схемы низкого тока светодиода.

Вы можете подключить три светодиода последовательно через вывод резистора R2, если вы используете 12-вольтовую батарею на входе.

Этот тип схемы не является эффективным, поэтому не рекомендуется для использования в проектных схемах.

Необходимые компоненты:

Одна батарея 12 В, резистор 300 Ом, резистор 1 кОм, несколько проводов.

Это просто схема делителя напряжения. Вы можете получить выходной сигнал в соответствии с вашими потребностями по следующей формуле:

Где, Vo — это напряжение o / p.Vin — напряжение источника. Выберите любое значение резистора R1 или R2 (также зависит от импеданса нагрузки) и решите другое. Затем выберите ближайший стандарт. номинал резистора.

Преобразователь 12В в 9В с использованием стабилитрона:

Схема, показанная ниже на схеме стабилитрона, полезна для (1-900 мА) цепи среднего тока, например. Светодиодные индикаторы, транзисторные переключатели, Arduino и т.д.Стабилитрон 1в. На выходе вы получите около 9,1 В.

Важно:
Нагрузка должна быть подключена к выходному концу, чтобы предотвратить повреждение стабилитрона. Резистор серии
10 Ом является токоограничивающим резистором, и когда на него подается большой ток, он должен пропускать этот ток через него, поэтому необходим резистор мощностью 5 Вт.

Необходимые компоненты:
Аккумулятор 12 В, резистор 10 Ом (≥10 Ом), стабилитрон 9,1 В (5 Вт), некоторые провода или разъемы.

Рабочий:
Это наиболее распространенная схема стабилитрона в конфигурации регулятора напряжения.

Конструкция стабилизатора напряжения стабилитрона 9 вольт от источника питания 12 вольт. Максимальная номинальная мощность…

Подробный расчет и формулы можно найти в статье о преобразователе 9В в 5В на этом сайте.

Простой преобразователь постоянного тока из 12 в в 9 вольт с использованием транзистора:

Схемы этих типов устарели, но все еще встречаются в некоторых периферийных устройствах.Это транзисторный стабилизатор напряжения в режиме EC:

скоро появится…

Pololu 12V повышающий / понижающий стабилизатор напряжения S18V20F12

Уведомление об ограничении поставок (обновлено 12 июля 2021 года): Из-за глобальной нехватки компонентов , мы серьезно ограничены в производстве этого товара.

Обзор

Эти повышающие / понижающие регуляторы принимают входное напряжение от 3 В до 30 В и увеличивают или понижают его по мере необходимости для получения фиксированного выходного напряжения 5 В, 6 В, 9 В, 12 В или 24 В, в зависимости от версия.Это импульсные стабилизаторы (также называемые импульсными источниками питания (SMPS) или преобразователями постоянного тока в постоянный) с топологией несимметричного первичного индуктивного преобразователя (SEPIC), и они имеют типичный КПД от 80% до 90%. Доступный выходной ток является функцией входного напряжения, выходного напряжения и КПД (см. Раздел «Типичный КПД и выходной ток » ниже), но он будет около 2 А, когда входное напряжение близко к выходному напряжению.

Семейство регуляторов S18V20x состоит из пяти версий с фиксированным выходом, упомянутых выше, а также двух версий с регулируемым выходом: S18V20ALV предлагает выходной диапазон от 4 до 12 В, а S18V20AHV предлагает выходной диапазон от 9 до 30 В.Все разные версии доски выглядят очень похоже, поэтому нижняя шелкография включает пустое место, где вы можете добавить свои собственные отличительные знаки или метки. Эта страница продукта относится ко всем четырем версиям с фиксированным выходом семейства S18V20x.

Гибкость входного напряжения, предлагаемая этими регуляторами, особенно хорошо подходит для приложений с батарейным питанием, в которых напряжение батареи начинается выше желаемого выходного напряжения и падает ниже целевого значения по мере разряда батареи.Без типичного ограничения на то, чтобы напряжение батареи оставалось выше требуемого в течение всего срока службы, можно рассмотреть новые аккумуляторные блоки и форм-факторы. Например:

  • Держатель 4-элементной батареи, который может иметь выход 6 В для свежих щелочей или выход 4,0 В для частично разряженных никель-металлгидридных элементов, может использоваться с версией этого регулятора на 5 В для питания цепи 5 В.
  • Одноразовая батарея на 9 В, питающая цепь 5 В, может быть разряжена до уровня менее 3 В вместо отключения 6 В, как в обычных линейных или понижающих регуляторах.
  • Версия этого регулятора на 6 В может использоваться для включения широкого диапазона вариантов источника питания для проекта сервопривода хобби.

Ток покоя без нагрузки обычно составляет около 1 мА для большинства комбинаций входного и выходного напряжений, хотя комбинация очень высокого выходного напряжения и очень низкого входного напряжения (например, при повышении с 3 В до 30 В на выходе. ) может привести к токам покоя порядка нескольких десятков миллиампер.

Вывод ENABLE можно использовать для перевода платы в состояние пониженного энергопотребления, которое снижает ток покоя до 10-20 мкА на вольт на VIN (например.грамм. приблизительно 30 мкА при 3 В на входе и 500 мкА при 30 В на входе).

Этот регулятор имеет встроенную защиту от обратного напряжения, защиту от перегрузки по току, тепловое отключение (которое обычно активируется при 165 ° C) и блокировку пониженного напряжения, которая вызывает отключение регулятора, когда входное напряжение ниже 2,5 В. (типичный).

В качестве мощных регуляторов только для повышения мощности рассмотрите наше семейство регуляторов U3V70x, которые обычно более подходят, если вы знаете, что ваше входное напряжение всегда будет ниже, чем ваше выходное напряжение.

Характеристики

  • Входное напряжение: от 2,9 В до 32 В
  • Фиксированный выход 5 В, 6 В, 9 В, 12 В или 24 В с точностью 4%
  • Типичный максимальный выходной ток: 2 А (когда входное напряжение близко к выходному; в разделе «Типичный КПД и выходной ток » ниже показано, как достижимый выходной ток зависит от входного и выходного напряжений)
  • Встроенная защита от обратного напряжения (до 30 В), защита от перегрузки по току, отключение при перегреве и блокировка при пониженном напряжении
  • Типичный КПД от 80% до 90%, в зависимости от входного напряжения, выходного напряжения и нагрузки
  • Четыре 0.Монтажные отверстия 086 ″ для винтов № 2 или M2
  • Компактный размер: 1,7 ″ × 0,825 ″ × 0,38 ″ (43 × 21 × 10 мм)
  • Отверстия меньшего размера для штырей разъема 0,1 ″ и отверстия большего размера для клеммных колодок предлагают несколько вариантов подключения к плате.

Использование регулятора

Подключения

Этот повышающий / понижающий регулятор имеет четыре соединения: входное напряжение (VIN), заземление (GND) и выходное напряжение (VOUT) и ENABLE.

Входное напряжение VIN должно быть в пределах 2.9 В и 32 В. Более низкие входные напряжения могут вызвать отключение регулятора или его нестабильную работу; более высокое входное напряжение может вывести из строя регулятор, поэтому вы должны убедиться, что шум на входе не является чрезмерным. 32 В следует рассматривать как абсолютное максимальное входное напряжение. Рекомендуемое максимальное рабочее напряжение составляет 30 В, что является пределом защиты от обратного напряжения.

Регулятор включен по умолчанию: подтягивающий резистор 100 кОм на плате подключает контакт ENABLE к VIN с обратной защитой.На вывод ENABLE можно подавать низкий уровень (ниже 0,7 В), чтобы перевести плату в состояние низкого энергопотребления. Потребляемый ток покоя в этом спящем режиме определяется током в подтягивающем резисторе от ENABLE до VIN и схемой защиты от обратного напряжения, которая потребляет от 10 до 20 мкА на вольт на VIN, когда ENABLE удерживается на низком уровне. (например, приблизительно 30 мкА при 3 В на входе и 500 мкА при 30 В на входе). Если вам не нужна эта функция, вы должны оставить контакт ENABLE отключенным. Обратите внимание, что топология SEPIC имеет собственный конденсатор от входа до выхода; поэтому выход не полностью отключается от входа, даже когда регулятор выключен.

Фиксированный повышающий / понижающий стабилизатор напряжения Pololu S18V20Fx с дополнительными клеммными колодками и штырями в комплекте.

Фиксированный повышающий / понижающий стабилизатор напряжения Pololu S18V20Fx, в сборе с прилагаемыми клеммными колодками.

Соединения обозначены на задней стороне печатной платы, и плата предлагает несколько вариантов выполнения электрических соединений.Вы можете припаять входящие в комплект 2-контактные клеммные колодки с шагом 5 мм к двум парам больших отверстий на концах платы. В качестве альтернативы, если вы хотите использовать этот регулятор с беспаечной макетной платой, разъемами с шагом 0,1 дюйма или другими прототипами, использующими сетку 0,1 дюйма, вы можете припаять части прилагаемой прямой штыревой полоски 9 × 1 к 0,1-дюймовой клеммной колодке. расположенные на расстоянии меньшие отверстия (каждое большое сквозное отверстие имеет соответствующую пару этих меньших отверстий). Для максимально компактной установки можно припаять провода прямо к плате.

На плате есть четыре монтажных отверстия 0,086 ″, предназначенных для винтов №2 или M2. В тех случаях, когда монтажные винты не используются, а провода припаяны непосредственно к плате, изолированную часть проводов можно пропустить через монтажные отверстия для снятия натяжения. На изображении выше показан пример этого с проводом 20 AWG, что близко к пределу того, что может пройти через монтажные отверстия.

Типичный КПД и выходной ток

КПД регулятора напряжения, определяемый как (выходная мощность) / (входная мощность), является важным показателем его производительности, особенно когда речь идет о сроке службы батареи или нагреве.Как показано на графиках ниже, эти импульсные стабилизаторы имеют КПД от 80% до 90% для большинства комбинаций входного напряжения, выходного напряжения и нагрузки.

Мы производим эти платы на собственном предприятии в Лас-Вегасе, что дает нам возможность производить партии регуляторов с индивидуальными компонентами, чтобы лучше соответствовать потребностям вашего проекта.Например, если у вас есть приложение, в котором входное напряжение всегда будет ниже 20 В, а эффективность очень важна, мы можем сделать эти регуляторы немного более эффективными при высоких нагрузках, заменив полевой МОП-транзистор с защитой от обратного напряжения 30 В на 20 В. Мы также можем настроить установленное выходное напряжение. Если вы заинтересованы в настройке, свяжитесь с нами.

Максимально достижимый выходной ток платы зависит от входного напряжения, но также зависит от других факторов, включая температуру окружающей среды, воздушный поток и теплоотвод.На графиках ниже показаны выходные токи, при которых защита от перегрева этого регулятора напряжения обычно срабатывает через несколько секунд. Эти токи представляют собой предел возможностей регулятора и не могут поддерживаться в течение длительного времени, поэтому постоянные токи, которые может обеспечить регулятор, обычно на несколько сотен миллиампер ниже.

При нормальной работе этот продукт может стать достаточно горячим, чтобы вас обжечь. Будьте осторожны при обращении с этим продуктом или другими подключенными к нему компонентами.

Люди часто покупают этот товар вместе с:

Как выбрать лучший стабилизатор напряжения для моей схемы?

Конференция APEC по энергетике является одновременно образовательной конференцией и выставкой поставщиков. Путешествие по выставочному залу 19 марта дало большую уверенность в первенстве, еще больше подчеркнув, что конференция APEC является главным событием в области силовой электроники.

Мой пресс-паспорт позволил мне проникнуть на выставку пораньше, чтобы я мог сделать несколько снимков стенда EPC, прежде чем он будет занят (рис.1 и 2) .

1. На стенде EPC на APEC 2019 было несколько отличных демонстраций и эталонных проектов.

2. Преобразователь мощностью 3 кВт, 48–12 В на транзисторах EPC GaN.

EPC — компания, основанная бывшим президентом International Rectifier Алексом Лидоу (рис. 3). Он намеревался создать коммерческий, практичный высокоскоростной транзистор на основе GaN (нитрида галлия) для силовых приложений.

3.Алекс Лидоу, основатель EPC, объясняет преимущества своих высокоскоростных транзисторов на основе GaN-на-кремнии.

Для этого Лидоу использовал кремниевую подложку для слоев GaN. Это означает, что пластины могут изготавливаться на обычном оборудовании для обработки кремния. Вдобавок Лидоу считал важным сделать транзисторы GaN улучшенного типа, то есть нормально выключенными. Устройства с режимом истощения производятся некоторыми компаниями, но Лидоу считает, что они незнакомы большинству энергетиков. Наконец, Лидоу решил заставить свои устройства на основе GaN работать при умеренных напряжениях, от 15 до 200 В.Это не пытается конкурировать ни с высоковольтными возможностями SiC (карбид кремния) транзисторов, ни с очень дешевыми низковольтными полевыми МОП-транзисторами.

4. Крис Джованниелло демонстрирует свое силовое реле MEMS.

Полупроводники — это здорово, но иногда физические переключатели — лучший способ справиться с питанием. Именно поэтому Menlo Micro разработала линейку реле MEMS (микроэлектромеханических систем). МЭМС десятилетиями использовались в радиочастотном переключении. Они имеют низкое сопротивление и очень контролируемый импеданс, что очень важно для ВЧ сигналов.Микросхемы силовых реле MEMS, которые производит Menlo Micro, отличаются номинальным током 8 А и напряжением 120 В. Чип меньше ногтя. Крис Джованниелло, соучредитель, старший вице-президент по разработке продуктов (рис. 4), по праву гордится этим достижением. Одно из приложений — замена твердотельных реле в силовых установках (рис. 5) .

5. Реле MEMS от Menlo Micro могут заменить механические и твердотельные реле (SSR).

Компании всех размеров

В то время как все крупные компании, производящие силовые полупроводники, приезжают в АТЭС, вы также можете увидеть несколько небольших компаний с интересными технологиями. Захид Рахим, вице-президент по маркетингу компании Silanna Semiconductor, продемонстрировал свой эталонный дизайн с фиксированным обратным ходом (рис. 6) . У них на выставке был дизайн, подключенный к сетевому напряжению. Там они могли провести измерения эффективности, которые показали улучшение на 2% при типичных нагрузках. Это действительно большое дело — выжать даже 0.Улучшение на 5% за счет обратного хода — большое достижение. Снижение потерь мощности, вероятно, означает меньшие EMI ​​(электромагнитные помехи), более легкие требования к охлаждению и более низкие счета за электроэнергию для потребителей. Улучшение на 2% при 90% -ном КПД означает, что потери увеличиваются с 10% до 8%, поэтому думайте об этом как о 20% -ном улучшении того, что имеет значение.

6. Захид Рахим из Силанны держит на ладони свой эталонный дизайн с активным зажимом.

Я восхищаюсь Кри, отличной компанией из Северной Каролины.Они всегда лидировали в материалах с широкой запрещенной зоной. Несмотря на то, что компания больше всего известна своими потребительскими светодиодными лампами, она также пользуется уважением в области радиочастотных транзисторов и других силовых устройств. Теперь новый генеральный директор Грег Лоу продает осветительный бизнес и делает упор на полупроводниковую часть компании. По иронии судьбы, Кри создал бренд Wolfspeed, когда предыдущий генеральный директор хотел продать бизнес по производству транзисторов. Эта сделка была отклонена правительством, что, вероятно, было благословением для Кри. Guy Moxey (рис.7) объяснил большой потенциал карбидокремниевых (SiC) транзисторов Wolfspeed в быстрорастущих электромобилях, солнечной, ветровой и промышленной энергетике.

7. Гай Мокси из подразделения Wolfspeed компании Cree рядом с эталонным проектом SiC на 60 кВт.

Появление практичных электромобилей дальнего действия, а также мягких гибридных электромобилей (mHEV) создает потребность в практических системах для моделирования и разработки систем электропривода.На стенде dSPACE Торстен Опперманн (Рис. 8) , менеджер по работе с клиентами, продемонстрировал как программное обеспечение, так и оборудование, которое dSPACE предлагает в помощь производителям автомобилей и подсистем (Рис. 9) .

8. Торстен Опперманн из dSPACE рассказал о своих автомобильных системах моделирования и тестирования.

9. Эта высоковольтная электронная нагрузка от dSPACE может имитировать двигатель и аккумулятор в электромобиле.

Магнитные материалы — фундаментальный строительный блок силовых электрических систем.Standex Electronics — известный производитель силовых магнетиков, датчиков, реле и герконов. Крис Риккарделла, инженер по полевым приложениям из отдела магнетизма, работал в кабине Standex (рис. 10) .

10. Крис Риккарделла из Standex Magnetics рассказал о широком ассортименте продукции компании.

Helix Semiconductors производит микросхемы с накачкой заряда на переключаемых конденсаторах. Эти высоковольтные зарядные насосы могут создавать интегральные передаточные отношения выпрямленного сетевого напряжения.Джефф Соренсен, старший главный инженер по приложениям (рис.11), продемонстрировал микросхемы Helix, которые также могут обеспечивать питание оптопар с обратной связью на вторичной стороне, а также изоляцию высоковольтных линий за счет использования конденсаторов с номиналом X или Y. .

11. Джефф Соренсен из Helix Semiconductor присутствовал с демонстрацией своей линейки высоковольтных ИС с накачкой заряда.

У

Microchip был отличный стенд на APEC (рис. 12) .Несколько станций на стенде показывают, сколько силовых приложений можно использовать с продуктами Microchip.

12. Стенд Microchip на APEC 2019 был переполнен весь день.

Некоторыми интересными приложениями были системы управления двигателями (рис. 13), , стабилизатор напряжения LDO (малое падение напряжения) с блокировкой пульсаций (рис. 14), и демонстрация PFC (коррекция коэффициента мощности) мощностью 30 кВт. с использованием SiC-транзисторов от Microchip (рис.15) . Я был удивлен, что компания, известная своими микроконтроллерами PIC, имела устройства питания.Затем специалист по маркетингу Microchip Надин Кастильо напомнила мне, что они купили Microsemi несколько лет назад.

13. Патрик Хит рассказал о некоторых из обширных аппаратных средств и прошивок Microchip для управления двигателями.

14. LDO с блокировкой пульсаций Microchip может очищать выходной сигнал линейных и импульсных регуляторов.

15. Джейсон Чианг из Microchip демонстрирует эталонную трехфазную схему с коррекцией коэффициента мощности (PFC) мощностью 30 кВт.

Выставочная площадка APEC 2019 — это не просто стенды. Был театр, где целый день проходили интересные презентации. ROHM’s Mitch Van Ochten (рис. 16) . представил один по пригодным для автомобильной промышленности SiC-транзисторам, организованный хорошими людьми из Mouser Electronics.

16. Митч Ван Охтен из ROHM выступил с прекрасной презентацией SiC-транзисторов в демонстрационном зале Mouser.

Ametherm — еще одна компания, которая производит строительные блоки для силовой электроники.На стенде компании был Мехди Самии, вице-президент по проектированию (рис. 17) , демонстрирующий лишь некоторые из своих многочисленных продуктов (рис. 18) .

17. Mehdi Samii от Ametherm представлял линейку ограничителей пускового тока с отрицательным температурным коэффициентом (NTC).

18. Ограничители броска тока Ametherm — это простой и надежный способ защиты силовых цепей.

Renesas — это огромное имя в сфере силовой электроники, у которого на APEC 2019 был загружен стенд (рис.19) . Компания продемонстрировала систему управления двигателем для пылесоса, в котором используется бесщеточный двигатель постоянного тока (BLDC) для достижения значительного повышения эффективности. Помимо управления двигателем, Renesas предлагает микросхемы и устройства для радиационно-стойких (радиационно-жестких) спутниковых GaN-устройств и наземное приложение для управления питанием в промышленных, серверных и двунаправленных аккумуляторных системах. Renesas приобрела Intersil, которая только увеличила его мощность и расширила возможности для операционных усилителей.

19.Стенд Renesas был забит людьми, проверявшими его силовые и моторные компоненты.

Стенд Tamura привлек внимание своим чистым дизайном и логичной компоновкой (рис. 20) . Tamura производит силовые, коммутационные и импульсные трансформаторы. Он также производит трансформаторы для измерения тока, дроссели, реакторы и сборки панелей.

20. Стенд Tamura был чистым и привлекательным.

Я закончил свой день на стенде Silicon Labs (рис.21) . Брайан Миркин объяснил их изолированный модулятор дельта-сигма, который может передавать аналоговый сигнал через границы высокого напряжения. Он также представил преобразователь LLC (индуктор-индуктор-конденсатор) мощностью 20 кВт, разработанный совместно с дистрибьютором Arrow Electronics (рис. 22) . Arrow десятилетиями отстаивал эталонные проекты, и приятно видеть, что Silicon Labs вносит свой вклад в эти разработки.

21. Брайан Миркин из Silicon Labs с их эталонным дизайном изолированного дельта-сигма-модулятора.

22. Дистрибьютор Arrow Electronics работал с Silicon Labs над созданием эталонного проекта блока питания LLC на 20 кВт.

На выходе из выставочного зала APEC 2019 я наткнулся на трогательную сцену, где папа со своим сыном (рис. 23) . Было здорово увидеть человека, который знал, как важно не отставать от силовой электроники и поддерживать интерес и образование своих детей. Не ждите, что я скучаю по поводу «молодых людей сегодня».«Пока есть такие папы, молодые люди будут жить прекрасно, превзойдя все достижения нас, старых динозавров.

23. Папа с маленьким сыном хорошо проводят время на APEC 2019.

Топ 10 лучших стабилизаторов напряжения 12 В для автомобилей — Лучшие оценки и отзывы 2021

Найти лучший стабилизатор напряжения 12 В для автомобиля без какой-либо информации может быть проблемой. Мы проанализировали 31238 отзывов ведущих экспертов, чтобы выбрать лучший.

Если вы ищете качественный стабилизатор напряжения 12 В для автомобиля по разумной цене, давайте проверим его и узнаем 10 лучших стабилизаторов напряжения 12 В для автомобиля ниже!

Бестселлер №2 Стабилизатор напряжения автомобиля, регулятор напряжения 12 В постоянного тока Устройство защиты от перенапряжения 12 В 144 Вт для тяжелых условий эксплуатации для автомобильного аккумулятора Авто Грузовик Лодка Двигатель Защита солнечной системы (вход 10-36 В постоянного тока, выход 12 В постоянного тока)
  • [Регулятор напряжения постоянного тока 12 В] Стабилизатор напряжения 12 В постоянного тока для тяжелых условий работы принимает входное напряжение 10–36 В постоянного тока, выходное напряжение 12 В постоянного тока.Максимальный ток: 12А. Высокая мощность: 144 Вт, обычно для защиты солнечной системы от автомобильного аккумулятора, грузовика, лодки, мотора.
  • [Защитите свои устройства] Устройство защиты от перенапряжения 12 В защищает электронику на 12 В от нестабильного напряжения или пикового скачка напряжения. Этот регулятор мощности широко используется в автобусах, CMB, больших грузовиках, двигателях, GPS-навигации, солнечной энергии, фотоэлектрической энергии, автобусных дисплеях, рекламных экранах такси, автомобильной аудиосистеме, ЖК-телевизорах, светодиодах, домофонах и системах мониторинга.
Бестселлер No.5 Стабилизатор напряжения 12 В постоянного тока, Устройство защиты от перенапряжения 12 В, автомобильный стабилизатор напряжения 4A, 48 Вт с водонепроницаемым предохранителем, преобразователь 12 В для защиты солнечной системы от автомобильного грузовика, двигателя лодки, двигателя (вход DC10-36V, выход DC12V)
  • [Регулятор напряжения постоянного тока] Этот трансформатор на 12 В защищает электронику на 12 В от нестабильности напряжения или пикового скачка напряжения. Низкое энергопотребление. Входное напряжение: 10-36 В постоянного тока, выход: 12 В постоянного тока.Максимальный ток: 4А 48Вт. ВНИМАНИЕ: 1. Перед использованием проверьте правильность выходного напряжения; 2. Пожалуйста, подтвердите положительную и отрицательную полярность питания перед подключением; 3. Перед использованием необходимо подключить входной отрицательный провод к GND или -, иначе выходное напряжение не изменится!
  • [с предохранителем и более безопасным] Для безопасности пользователей наши преобразователи на 12 В оснащены предохранителями. Когда напряжение слишком высокое, ток превышает (15 А), цепь выходит из строя или выходит из строя, предохранитель перегорает, и трансформатор перестает работать, тем самым защищая электрические приборы.Кроме того, это может снизить риск возгорания или взрыва. Высокая конверсия более 96%, вывод правильный. Высокое качество и производительность, более длительный срок службы.

Вы можете быть напуганы и ошеломлены, потому что существует слишком много конструкций и функций, когда дело доходит до , лучший стабилизатор напряжения 12 В для автомобилей на рынке .Даже вы не можете определить свои любимые дизайны, потому что, какими бы они ни были, они все вам понравятся.

Мы продолжаем получать массу вопросов от читателей перед покупкой стабилизатора напряжения 12 В для автомобиля , например:

  • Какой стабилизатор напряжения 12в лучше для автомобиля 2021 года?
  • Какой стабилизатор напряжения 12 В для автомобиля лучше всего купить на рынке?
  • Какой самый лучший доступный стабилизатор напряжения 12 В для автомобиля (лучший бюджетный, лучший дешевый, лучший качественный стабилизатор напряжения 12 В для автомобиля)?
  • Какой лучший бренд стабилизатора напряжения 12 В для автомобиля?

Все вышеперечисленные вопросы сводят вас с ума, когда вы их задаете.Мы знаем ваши чувства, потому что раньше попадали в странную ситуацию, когда искали эти предметы.

Прежде чем принять решение о покупке чего-либо, обязательно изучите и внимательно прочтите руководство по покупке в другом месте из проверенных источников.

Вы можете увидеть 10 лучших стабилизаторов напряжения 12 В для автомобилей в 2021 году — самые популярные и отзывы выше . Списки лучших товаров регулярно обновляются, поэтому вы можете быть уверены, что предоставленная информация актуальна.Не стесняйтесь обращаться к нам, если что-то не так или вводит в заблуждение.

Эффективное преобразование 12 В постоянного тока в 5 В для маломощной электроники, оценка шести модулей

В настоящее время я работаю над проектом Arduino, устанавливаемым на автомобиле. Устройство рассчитано на постоянное питание, и я решил использовать автомобильный аккумулятор в качестве источника постоянного питания. Я проектирую устройство с низким энергопотреблением, потребляющим 50 мА или меньше, потому что кто хочет застрять с разряженной батареей, верно?

Автомобильный аккумулятор обычно обеспечивает напряжение от 7 до 15 вольт, но в некоторых стандартах упоминается, что возможны скачки напряжения 40 В.Напряжение автомобильного аккумулятора обычно составляет около 12 В, но падает до ~ 7 В, когда вы запускаете двигатель, и до ~ 14 В, когда двигатель работает и аккумулятор заряжается. Поскольку мы не хотим, чтобы наше устройство перезагружалось во время пусков, мы хотели бы выполнить преобразование входного напряжения от 7 до 20 вольт в фиксированное выходное напряжение 5 вольт, которое ожидает Arduino Uno.

Регуляторы напряжения

На плате Arduino Uno есть стабилизатор напряжения, который мы могли бы использовать. Рекомендуется для напряжений от 7 до 12 вольт.Это означает, что нам нужно сначала снизить высокое напряжение автомобильного аккумулятора с помощью внешнего компонента, прежде чем мы сможем подключить его к плате Arduino Uno. К сожалению, одно это не решило бы наших проблем, поскольку не удовлетворило бы наши требования к эффективности.

Arduino Uno с обведенным регулятором напряжения. [Фото http://www.electricrcaircraftguy.com]

Проблема с использованием регулятора напряжения заключается в том, что регулятор расточителен. Любое дополнительное напряжение, которое необходимо сбросить, преобразуется в тепло.Формула эффективности: eff (reg) = Vout / Vin. Стабилизатор напряжения также имеет некоторые преимущества, одно из них — стабильность, что означает, что он может поддерживать очень стабильное и точное выходное напряжение. Еще одно преимущество — компактные размеры.

Чтобы выполнить эффективное преобразование, мы должны использовать импульсный источник питания, в частности понижающий преобразователь, который будет понижать для нас напряжение. Понижающий преобразователь будет включать и выключать вход настолько быстро, насколько это необходимо для обеспечения необходимого напряжения и мощности на выходе.В оставшейся части этой статьи будут сравниваться шесть различных понижающих (понижающих) модулей. Если вы не знакомы с принципом работы понижающего преобразователя с переключением режимов, прочтите эту статью, в которой также сравниваются некоторые модули при более высоких нагрузках.

Кандидатские модули

Одна реализация, которую я рассмотрел, — это понизить напряжение батареи примерно до 7 вольт, а затем запитать Arduino через его регулятор напряжения. Преимущество заключается в более стабильном напряжении для Arduino, однако будет потеря энергии 1-eff (reg) = 1-5 / 7 = 28%.Кроме того, каждый процесс преобразования требует некоторого запаса между Vin и Vout, поэтому при наличии двух этапов нам становится трудно поддерживать нижний предел диапазона напряжения автомобильного аккумулятора, что создает потенциальные проблемы со сбросами во время запуска двигателя.

Итак, я закончил поиск модулей, которые могут работать от автомобильного аккумулятора и выдавать 5 вольт. Это может быть регулируемый модуль или фиксированный на 5 вольт. Я бы подключил эти модули к USB-порту Arduino (предпочтительнее из-за присутствующей там дополнительной защиты) или напрямую к выводу Arduino 5V.Это означает, что предпочтение отдается модулям со встроенным выходным USB-портом типа «мама», хотя адаптеры или кабели преобразователя могут компенсировать его отсутствие.

Модули

Модули, которые я тестировал, происходят с Дальнего Востока, и большинство из них были куплены на eBay по цене от 1 до 2 долларов США (включая доставку). Это означает, что у большинства из них нет четкого номера модели или названия производителя. Я придумываю короткое название для каждого модуля, чтобы я мог легко их упомянуть.Я признаю, что качество фотографий могло быть лучше. Я старался изо всех сил с имеющимся у меня оборудованием. Также обратите внимание, что каждая фотография имеет собственный масштаб. Вот модули в произвольном порядке.

Сигара

Конвертер «Сигарный»

Этот адаптер имеет штекер прикуривателя на одном конце и предназначен для подключения к гнезду прикуривателя в автомобиле. Выходной разъем — это женский USB-порт. Такие модули продаются конечным пользователям для зарядки USB-устройств в автомобиле.Я понятия не имею, где я это взял, но я нашел его в своей корзине запчастей, разобрал и использовал в этом исследовании.

Поскольку такие преобразователи продаются конечным пользователям, их списки обычно не показывают фотографии печатной платы, так что это рулетка в отношении того, какой чип и эффективность вы получаете.

Регулируемый

«Регулируемый» преобразователь, передний

«Регулируемый» преобразователь, задний

Этот адаптер продавался на eBay как «Регулируемый понижающий модуль питания DC-DC LM2596 4.От 75-24В до 0,93-18В ». На самом деле чипа LM2596 там нет, что не должно быть большим сюрпризом для покупателей eBay. Это регулируемый понижающий модуль, который отлично подходит для создания прототипов. Вы регулируете выходное напряжение с помощью многооборотного потенциометра. Входные и выходные разъемы представляют собой винтовые клеммы, и вы можете видеть, что я подключил их к цилиндрической вилке для удобства использования.

Амперметр

Преобразователь амперметра, передний

Преобразователь «Амперметр», Задний

Этот модуль продавался на eBay как «Понижающий преобразователь постоянного тока 2А постоянного напряжения с вольтметром и амперметром».Он имеет регулируемое напряжение, ток и дисплей, который может отображать входное / выходное напряжение и выходной ток. Очень хорошо для прототипирования. Для некоторых людей это может быть даже альтернативой правильному настольному источнику питания. Этот модуль имеет разъемы, аналогичные модулю «Регулируемый», метод регулировки также аналогичен.

штраф

Преобразователь «Fine», передний

Преобразователь «Fine», задний

Этот модуль от QSKJ был внесен в список «Fine 6-24V 12V / 24V to 5V 3A CAR USB Charger Module DC Buck step down Converter».Это один из самых маленьких модулей в тесте. Он явно предназначен для интеграции в другие проекты, поскольку имеет две контактные площадки для ввода. На выходе получается довольно симпатичный женский USB-порт. В листинге упоминается множество дополнительных функций, таких как новейшая схема идентификации USB, схемы защиты, сверхнизкий статический ток (0,85 мА) и многое другое.

600 мА

Преобразователь «600 мА», передний

Преобразователь «600 мА», задний

Этот модуль с пометкой «DM01» на 100% предназначен для интеграции.Входы и выходы через контактные площадки. Похоже, этот модуль также выпускается в версиях на 3,3, 9 и 12 В. Он был выставлен на продажу как «понижающий понижающий модуль постоянного / постоянного тока 600 мА с фиксированным выходным напряжением 6-55 В на 5 В». Это может быть самый маленький модуль из 6, но отсутствие порта USB делает его нечестным сравнением. Одна особенность, которая отличает этот модуль от других, участвовавших в тесте, заключается в том, что он имеет панель «EN». Вы можете управлять этим разъемом для выключения и запуска модуля при необходимости. Заявленный ток отключения составляет менее 1 мкА.Если вы просто собираетесь подключить эту площадку к «Vin +», не беспокойтесь, «ток холостого хода» этого модуля составляет всего 0,7 мА.

Precise

Преобразователь «Precise», передний

Преобразователь «Прецизионный», задний

Этот модуль имеет те же подключения, что и «Fine», но он немного больше. Он продавался как «3A DC-DC 9V / 12V / 24V to 5V USB Step Down Power Module 2A Precise Vehicle Charger».

Напряжение и ток

Вот некоторые электрические свойства 6 модулей.У меня не было свойств модуля для «Сигары», поэтому диапазоны основаны на спецификациях микросхем и могут быть лучше, чем фактические диапазоны модулей.

Модуль Входное напряжение Выходное напряжение Максимальный выходной ток Пиковый выходной ток
Сигара 3-40 В 5,4 — 5,5 В 1,5 А?
Регулируемый 4,75 — 24 В 0,93 — 18 В 2.5A 5A
Амперметр 4,5 — 24 В 0,93 — 20 В 2A?
Тонкое 6 — 24 В 5,1 — 5,2 В 2,1 A 3A
600 мА 6 — 55 В 5 В 0,6 A 1 A
Precise 7,5 — 28V 5V 2A 3A

Пиковый ток означает способность обеспечивать высокий ток в течение ограниченного периода времени.Максимальный ток означает максимальный ток, который модуль может обеспечить постоянно. Имейте в виду, что в некоторых модулях упоминается, что для работы с максимальным током может потребоваться дополнительный радиатор или охлаждающее решение.

Несколько моментов, о которых стоит упомянуть: во-первых, «Сигара» с фиксированным выходным USB-разъемом выдает слишком высокое напряжение по стандартам USB. Это могло быть из-за старости или просто плохого качества. Разница составляет около 10%, и я считаю ее непригодной для использования. Во-вторых, большинство модулей способны работать с входным напряжением примерно до 25 вольт, но немногие из них могут работать с напряжением 40 вольт и выше.Престижность за это.

Свойства коммутационной цепи

Модуль Микросхема Частота Индуктор Заявленный КПД
Сигара MC34063A
100 кГц 220 мкГн? 83% при 24 В и 500 мА
Регулируемый MP23070N 340 кГц
10 мкГн? до 98%
Амперметр MP23070N 340 кГц
10 мкГн??
Fine MP2315 (знак AGCG)
500 кГц 4.7 мкГн от 12 В до 5 В 1 А, банка до 94%
600 мА HT7463A (марка 463A)
1250 кГц
22 мкГн до 96%
Точный MP1584EN 500 кГц
15 мкГн? до 96%

Более высокая частота переключения будет означать меньшую пульсацию на выходе (более точное напряжение / ток), но вызывает больше накладных расходов из-за переключения, что немного снижает эффективность.

Рядом с некоторыми значениями индуктивности стоит знак «?». Это означает, что компонент не был отмечен, а значение было оценено на основе рекомендаций в таблице данных. Обычно для более низкой частоты требуется индуктор большего размера и большей мощности.

Тестирование

Измерение тока с обеих сторон

Сначала я измерил ток, используемый моим устройством на выходе преобразователя, который составил около 50 мА. Затем я создал фиктивную нагрузку 100 Ом, подключив два резистора по 200 Ом параллельно.Я использовал массив резисторов, чтобы уменьшить нагрузку на каждый отдельный резистор, который был рассчитан на 0,25 Вт. В соответствии с законом Ома резистор на 100 Ом будет вызывать нагрузку 50 мА при напряжении 5 вольт, аналогично тому, как это делает устройство.

Затем я измерил ток, используемый преобразователем на входе, как для нагрузки устройства, так и для фиктивной нагрузки. Я заметил, что реальная нагрузка и фиктивная нагрузка с одинаковым средним током имеют одинаковую эффективность. Разница могла возникнуть, поскольку потребляемая мощность фиктивной нагрузки является фиксированной, в то время как устройство может потреблять мощность пачками, но это не оказало существенного влияния на результаты.Я пришел к выводу, что использование фиктивных резисторов — достаточно хорошее приближение для этого теста.

Затем я сделал фиктивные нагрузки для токов 25 мА, 50 мА и 100 мА, используя 1, 2 и 4 резистора, включенных параллельно.

Измерение тока с имитацией нагрузки

Чтобы как можно меньше повлиять на измерение, я использовал амперметр на входе (последовательно) и рассчитал ток на выходе, используя закон Ома I = V / R. Таким образом, не было никакого воздействия на выходную сторону, которое могло бы добавить падение напряжения и повлиять на результаты.Напряжение V измерялось параллельно, а сопротивление R известно и зависит от фиктивной нагрузки, используемой для каждого испытания.

Блок питания для теста был на 12 В, но из-за падения напряжения на амперметре входное напряжение модулей немного ниже.

Результаты

Я рассчитал эффективность каждого модуля для каждого типа нагрузки как:

 eff = Pin / Pout = (Vin * Iin) / (Vout * Iout) 

Таблицы данных некоторых микросхем, используемых в модулях, содержат график эффективности.Эффективность зависит от напряжения и тока. Если возможно, я добавил в последний столбец перечисленную эффективность микросхемы для соответствующих Vin и Iout. У некоторых модулей есть диаграммы эффективности, которые не охватывают диапазоны малых токов, что может указывать на тип нагрузки, для которой (не) были разработаны микросхемы.

Выходной ток 25 мА

Модуль In V Out V In mA Эффективность Эффективность чипа
Сигара 11.82 5,46 21 60%
Регулируемый 11,63
5,08 35,65 31%
Амперметр 11,58 5,04
40,04 27%
Мелкое 11,91 5,12 13,7 80% 87%
600 мА 11,9
5.04 14,2 75% 74%
Precise 11,9
4,98 14,75 71% 75%

Выходной ток 50 мА

Модуль In V Out V In mA Эффективность Эффективность чипа
Сигара 11,52 5,49 38,6 68%
Регулируемый 11.45 5,08 47,44 48%
Амперметр 11,39 5,05 52,2 43%
Мелкое 11,73 5,13 26,98 83% 89%
600 мА 11,72 5,01 26,66 80% 86%
Precise 11,72 4,98 27.3 78% 77,5%

Выходной ток 100 мА

Модуль In V Out V In mA Эффективность Эффективность чипа
Сигара 11,15 5,54 76,3 72%
Регулируемый 11,22 5,08 79,8 58%
Амперметр 11.18 5,04 76,1 60%
Мелкое 11,41 5,12 54,6 84% 91%
600 мА 11,46 4,9 51 82% 88%
Precise 11,38 4,96 53,5 81% 82%

Заключение

Различия могут быть значительными, как показано выше.При тесте с наименьшей нагрузкой (25 мА) худший исполнитель потребляет в 3 раза больше энергии, чем лучший.

Различия в эффективности между модулями становятся более тонкими по мере увеличения нагрузки: 2x для 50 мА и 1,5x для 100 мА.

Входные напряжения разные. Более высокий ток на входе означает большее падение напряжения на амперметре, что приводит к более низкому входному напряжению по сравнению с выходным напряжением источника питания.

Указанный КПД микросхемы находится в пределах 5-10% от измеренного КПД модуля. Дельта может быть связана с неэффективностью самого модуля или с различиями в общих условиях (температура и т. Д.).

И победитель: «Отлично»! Этот модуль явно лучше всего подходит для сценариев с низким энергопотреблением. При достижении токов 100 мА разница между 3 ведущими модулями минимальна.

Чем «Fine» лучше других? Это относительно новая микросхема. Таблица относится к 2014 году, а MP2307 — с 2008 года. Он также имеет очень низкие значения Rds (on) (90 мОм / 40 мОм), но, что наиболее интересно, MP2315 имеет режим энергосбережения AAM (Advanced Asynchronous Modulation) для легкая нагрузка.

Расширенная асинхронная модуляция (AAM) — это запатентованная технология MPS. Используя эту технологию, ИС будет снижать свою частоту при обнаружении низких нагрузок, тем самым уменьшая накладные расходы на переключение, но потенциально вызывая нестабильность и колебания. Значение резистора на выводе AAM определяет, когда начать это поведение. Не стесняйтесь поправлять меня в комментариях, если я неправильно это объясняю.

В заключение, если вам нужен эффективный модуль для легких нагрузок, вы можете попробовать его от QSKJ с чипом MPS MP2315, помеченным как AGCx (я видел, как AGCG или AGCE используются специально).Если у вас есть другие рекомендации, поделитесь ими в комментариях ниже. Удачного проекта!

Hybrid Мощный стабилизатор напряжения с выходом 12 В для разнообразного использования

Доступ к множеству вариантов мощных, надежных и эффективных. Стабилизатор напряжения с выходом 12 В на Alibaba.com для всех типов жилых и коммерческих помещений. Эти. Стабилизатор напряжения , 12 В, выход оснащены по последнему слову техники и обладают различной мощностью, чтобы с легкостью служить вашим целям.Вы можете выбрать из существующих. Стабилизатор напряжения , выход 12В Модели можно посмотреть на сайте или приобрести полностью индивидуализированные версии этих продуктов. Они долговечны и устойчивы, чтобы постоянно предлагать стабильное обслуживание без каких-либо поломок.

The. Стабилизатор напряжения , выход 12 В Коллекции , найденные на сайте, оснащены всеми интересными функциями, такими как интеллектуальная технология охлаждения для более быстрого и интеллектуального охлаждения, защита от короткого замыкания, интеллектуальная сигнализация для обнаружения и отображение любых ошибок, защита от перенапряжения , и так далее.Эти. Стабилизатор напряжения с выходом 12 В доступны с различными значениями напряжения, такими как 230 В переменного тока, 220 В / 230 В / 240 В для преобразователей и 100 В / 110 В / 120 В / 220 В / 230 В / 240 В для линейки инверторов. Эти. Стабилизатор напряжения с выходом 12 В также оснащен функцией защиты от обратной полярности на входе.

Alibaba.com может помочь вам сделать выбор среди других. Стабилизатор напряжения 12В на выходе с различными моделями, размерами, емкостями, потребляемой мощностью и многим другим.Эти умные. Стабилизатор напряжения 12В с выходом экономит электроэнергию даже в самых суровых климатических условиях. У них также есть возможность быстрой зарядки. Вы можете использовать это. Стабилизатор напряжения 12 В на выходе в ваших домах, гостиницах, офисах или любой другой коммерческой недвижимости, где энергопотребление является дорогостоящим и важным.

Просмотрите разнообразное. Стабилизатор напряжения , выход 12 В, диапазон на Alibaba.com и покупайте лучшие из этих продуктов. Все эти продукты имеют сертификаты CE, ISO, RoHS и имеют гарантийный срок.OEM-заказы доступны для оптовых закупок с индивидуальными вариантами упаковки.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *