Mc 34063 микросхема: Повышающий DC-DC преобразователь на MC34063 (из 5В в 12В) – Модуль лабораторного блока питания на MC34063

Повышающий DC-DC преобразователь на MC34063 (из 5В в 12В)

Повышающие DC-DC преобразователи находят широкое применение в электронике. Они могут применяться как отдельные модули питания конкретных объектов, так и могут входить в часть электрической схемы. Например, можно поднять напряжение пятивольтного аккумулятора и питать от него через повышающий преобразователь нагрузку напряжением 12В (усилитель, лампу, реле и т.д.). Еще пример, в некоторых охранно-пожарных сигнализациях на линиях контроля около 30В постоянного тока, а сам блок контроля и управления работает от 12В, поэтому в последние внедряют повышающие преобразователи и они являются частью схемы блоков контроля и управления.

Микросхема МС34063 представляет собой импульсный конвертор, поэтому она обладает высокой эффективностью (КПД) и имеет три схемы включения (инверторную, повышающую и понижающую). В этой статье будет описан исключительно повышающий (Step Up) вариант.

Повышающий DC-DCПовышающий DC-DC

МС34063 выполняется в корпусах DIP-8 и SO-8. Расположение выводов показано ниже.

Повышающий DC-DCПовышающий DC-DC

Основные технические параметры MC34063.

Входное напряжение ………. от 3 до 40 Вольт

Выходное напряжение ………. от 1.25 до 38 Вольт

Максимальный ток на выходе ………. 1.5 Ампер

Максимальная частота ………. 100кГц

Максимальный ток на выходе это пиковый ток на внутреннем транзисторе и он значительно больше тока нагрузки, поэтому не стоит надеяться, что преобразователь будет держать 1.5A на выходе. Ниже представлен калькулятор, который позволит правильно посчитать ток.

Другую интересующую информацию по параметрам и внутреннему устройству микросхемы можно найти в Datasheet.

Схема повышающего DC-DC преобразователя на MC34063.

Повышающий преобразователь MC34063 схемаПовышающий преобразователь MC34063 схема

Опишу работу простыми словами.  В микросхеме MC34063 есть генератор, генерирующий импульсы с определенной частотой. Генератор, взаимодействуя с другими узлами, управляет выходным транзистором, коллектор которого соединен с выводом 1, а эмиттер с выводом 2.

Когда выходной транзистор открыт, дроссель L1 заряжается входным напряжением через резистор R3.

Работа MC34063Работа MC34063

После закрытия выходного транзистора, дроссель отключается от земли и в этот момент происходит его разряд (самоиндукция). Энергия дросселя уже с противоположной полярностью и большая по силе поступает на диод VD1. После выпрямления напряжения диодом, оно поступает на выход схемы, накапливаясь в конденсаторе C3. Помимо накопления, данный конденсатор сглаживает пульсации.

Работа mc34063Работа mc34063

Схема конвертирует напряжение постоянного тока с 5В до 12В. Чуть ниже пойдёт речь об изменении номиналов элементов под нужные напряжения.

Резисторами R1 и R2 задается напряжение на выходе. Резистор R3 ограничивает выходной ток до минимума, при превышении определенной мощности.

Конденсатор C2 задает частоту преобразования.

Повышающий DC-DC преобразователь на mc34063Повышающий DC-DC преобразователь на mc34063 Step-Up mc34063Step-Up mc34063

Элементы.

Все резисторы мощностью 0.25Вт кроме R3 (0.5-1 Ватт).

В качестве L1 я взял готовый дроссель на 470мкГн, намотанный медным эмалевым проводом на гантель из феррита и отмотал три слоя, уменьшив тем самым индуктивность до 75мкГн (индуктивность больше расчетной допускается, а меньше нельзя).

Дроссель должен выдерживать пиковый выходной ток (в моем случае 1.5А).

Также можно взять кольцо из порошкового железа (жёлтого цвета) наружным диаметром 18мм, внутренним 8мм, толщиной 8мм и намотать медным проводом (диаметром 0.6мм и более) 30-40 витков (при 30 витках индуктивность получилась 55мкГн). Кольцо можно взять больше моего, но меньше не рекомендую.

Работа MC34063 UPРабота MC34063 UP

Диод VD1- Шоттки, либо быстродействующий (типа SF, UF, MUR, HER и т.д.) на ток не менее 1А и обратное напряжение в два раза больше выходного (в моем случае 40В).

У микросхемы МС34063 есть отечественный аналог КР1156ЕУ5, они полностью взаимозаменяемы.

Расчет преобразователя на MC34063 под другое напряжение и ток.

Расчет займет не более одной минуты. Для этого необходимо воспользоваться On-line калькулятором расчета параметров МС34063. Помимо номиналов программа высчитает пиковый выходной ток, и в случае его превышения выдаст сообщение.

Калькулятор считает минимальную индуктивность, поэтому ее можно брать с положительным запасом (произойдут незначительные изменения лишь в КПД).

Пару слов…

Расчетная частота (50кГц в моем случае) является минимальной и может значительно отличаться и изменяться в зависимости от входного напряжения и тока нагрузки.

При выходном токе 200мА происходит достаточно сильный нагрев микросхемы MC34063, и работать в таком режиме долгое время возможно не сможет.

Step-Up DC-DCStep-Up DC-DC

Рекомендую использовать MC34063 в тех случаях, когда нужно питать слаботочную часть схемы или отдельную нагрузку током до 150-250мА, а для нагрузки 3-5А предлагаю обратить внимание на повышающие DC-DC преобразователи, построенные на базе UC3843 и UC3845.

Печатная плата повышающего преобразователя на MC34063 (из 5В в 12В) СКАЧАТЬ

Datasheet на MC34063 СКАЧАТЬ


Похожие статьи

MC34063 С ВНЕШНИМ КЛЮЧОМ НА ТРАНЗИСТОРЕ

Эта схема является универсальным преобразователем напряжения, который идеально подходит например для изготовления часов на лампах Nixie. Преобразователь работает на базе популярной и недорогой м/с MC34063 и для работы требует лишь несколько внешних компонентов. В схеме применен усиливающий ключ — высоковольтный полевой транзистор MOSFET STP6NK60Z. Устройство предназначено для входного питания напряжением 12 В. Выходное напряжения порядка 150 В с максимальным током нагрузки 3 мА.

Схема проекта

микросхема MC34063 и ключ - схема

Основой преобразователя является многим уже хорошо известная микросхема MC34063, которая представляет собой чип-контроллер, содержащий основные компоненты, необходимые для изготовления преобразователей DC-DC. Система компенсируется термически, имеет источник опорного напряжения, компаратор и генератор с регулировкой.

микросхема MC34063 и ключ - схема

Конденсатор C3 (1nF) определяет частоту внутреннего генератора. При такой емкости частота колебаний будет порядка 40 кГц. Конденсатор C1 (470uF/25V) фильтрует напряжение питания, а C2 (1nF) фильтрует напряжение, отвечающее требованиям внутреннего компаратора с делителя R1 (10k) к R3 (1М) + PR1 (1М). На ножке 5 микросхемы U1 при стабильной работе держится напряжение 1.25 В. И теперь считаем теоретический диапазон выходных напряжений: 125 В (потенциометр к 0) до 250 В (потенциометр на максимальное значение).

Резистор R2 (2,2 Ома) небольшого сопротивления работает как датчик тока, ограничивая амплитуду тока на входе, а, следовательно, энергоэффективность системы. Преобразователь работает в двух циклах:

  1. В первом, когда транзистор T2 (STP6NK60Z) замкнут, энергия накапливается в дросселе L1 (470uH).
  2. Во втором цикле ключ будет отключен и высокое индуцированное напряжение в катушке, заряжает конденсатор C4 (MKPX2 100nF/275VAC) через диод D2 (UF4007). Светодиод препятствует разрядке конденсатора.

микросхема MC34063 и ключ - схема

Печатная плата не имеет перемычек, а ее монтаж очень простой. Порядок пайки элементов, в принципе, любой, однако стоит начать с самых маленьких. Следует обратить особое внимание на качество сборки, особенно это касается делителя обратной связи. Без него выходное напряжение может вырасти до больших значений, повредив конденсатор и даже ключевой транзистор. Выходную мощность преобразователя можно увеличить, применив резистор R2 меньшего значения. При величине этого резистора на уровне 1 Ом, сила выходного тока вырастет примерно до 8 мА.

   Схемы преобразователей

Alex_EXE » Понижающий DC-DC преобразователь на MC34063

Внимание! Статья отправлена на доработку.

Очень часто встаёт вопрос о том, как получить требуемое для схемы питание напряжение, имея источник с отличным от требуемого напряжения. Такие задачи делятся на две: когда: нужно уменьшить или увеличить напряжение до заданного. В этой статье будет рассмотрен первый вариант.

Как правило, можно применить линейный стабилизатор, но у него будут большие потери по мощности, т.к. разность в напряжениях он будет преобразовывать в тепло. Здесь на помощь приходят импульсные преобразователи. Вашему вниманию предлагается простенький и компактный преобразователь на MC34063.

Вид преобразователя

Эта микросхема очень универсальна, на ней можно реализовывать понижающие, повышающие и инвертирующие преобразователи с максимальным внутренним током до 1,5А. Но в статье рассмотрен только понижающий преобразователь, остальные будут рассмотрены позже.

Размеры получившегося преобразователя – 21х17х11 мм. Такие размеры получилось из-за использования совместно выводных и SMD деталей. Преобразователь содержит всего 9 деталей.

Схема

Детали в схеме рассчитаны на 5В с ограничение тока 500мА, с пульсацией 43кГц и 3мВ. Входное напряжение может быть от 7 до 40 вольт.

За выходное напряжение отвечают резисторный делитель на R2 и R3, если их заменить подстроечным резистором где-то на 10 кОм, то можно будет задавать требуемое выходное напряжение. За ограничение тока отвечает резистор R1. За частоту пульсаций отвечают конденсатор C1 и катушка L1, за уровень пульсаций конденсатор C3. Диод может быть заменён на 1N5818 или 1N5820. Для расчёта параметров схемы есть специальный калькулятор — http://www.nomad.ee/micros/mc34063a/index.shtml, где стоит только задать требуемые параметры, он так же может рассчитать схемы и параметры преобразователей нерассмотренных двух типов.

Вид сзади

Платы

Было изготовлено 2 печатные платы: слева – с делителем напряжения на делителе напряжения, выполненном на двух резисторов типоразмера 0805, справа с переменным резистором 3329H-682 6,8кОм. Микросхема MC34063 в корпусе DIP, под ней два чип танталовых конденсатора типоразмера – D. Конденсатор C1 –типоразмера 0805, диод выводной, резистор ограничения тока R1 – на пол вата, при малых токах, меньше 400 мА, можно поставить резистор меньшей мощности. Индуктивность CW68 22мкГн, 960мА.

Осциллограмма Осциллограмма

Осциллограммы пульсаций, R огранич = 0,3 Ом

На этих осциллограммах показаны пульсации: слева – без нагрузки, справа – с нагрузкой в виде сотового телефона, ограничивающий резистор 0,3 Ом, снизу с той же нагрузкой, но ограничивающий резистор на 0,2 Ом.

Осциллограмма

Осциллограмма пульсации, R огранич = 0,2 Ом

Снятые характеристики (замерены не все параметры), при входном напряжении 8,2 В.

Применение

Этот адаптер был изготовлен для подзарядки сотового телефона и питания цифровых схем в походных условиях.

Схема с переменны резистором

В статье была приведена плата с переменным резистором в качестве делителя напряжения, размешаю к ней и соответствующею схему, отличие от первой схемы только в делителе.

Скачать печатки в формате Sprint Layout

Схема обновлена 15 марта 2011 года

Стабилизатор тока на микросхеме МС34063 — 5 Апреля 2015

Ещё один вариант стабилизатора тока микросхеме МС34063. От уже известных схем стабилизаторов на этой микросхеме, предложенный вариант отличается немного нестандартным включением, позволившим увеличить рабочую частоту и обеспечить устойчивость даже при малых значениях индуктивности дросселя и ёмкости выходного конденсатора.Особенность микросхемы заключается в том, что она является одновременно и ШИМ и релейной.

В документе AN920-D описано: Во время зарядки времязадающего конденсатора на одном входе логического элемента «И», управляющего триггером, устанавливается логическая единица. Если выходное напряжение стабилизатора ниже номинального (по входу с пороговым напряжением 1,25В), то логическая единица выставляется и на втором входе этого же элемента. В этом случае на выходе элемента и на входе «S» триггера выставляется также логическая единица, он устанавливается (активный уровень по входу «S» — лог. 1) и на его выходе «Q» появляется логическая единица, открывающая ключевые транзисторы. Когда напряжение на частотозадающем конденсаторе достигнет верхнего порога, он начинает разряжаться, при этом на первом входе логического элемента «И» появляется логический ноль. Этот же уровень подаётся и на вход сброса триггера (активный уровень по входу «R» — лог. 0) и сбрасывает его. На выходе «Q» триггера появляется логический ноль и ключевые транзисторы закрываются. Далее цикл повторяется.

По функциональной схеме видно, что это описание относится только к компаратору тока, функционально связанному с задающим генератором (pin 7). А выход компаратора напряжения (pin 5) таких привилегий не имеет.

Получается, что в каждом цикле компаратор тока может как открывать ключевые транзисторы, так и закрывать их, если, конечно, разрешает компаратор напряжения. Но сам компаратор напряжения может выдавать только разрешение или запрет на открывание, которое может быть отработано только, в следующем цикле.

Отсюда следует, что если закоротить вход компаратора тока (pin 6 и 7) и управлять только компаратором напряжения (pin 5), то ключевые транзисторы открываются им и остаются открытыми до конца цикла зарядки конденсатора, даже если на входе компаратора напряжение превысило пороговое. И только с началом разрядки конденсатора генератор закроет транзисторы. В таком режиме мощность, отдаваемая в нагрузку, может дозироваться только частотой задающего генератора, так как ключевые транзисторы хотя и закрываются принудительно, но только на время порядка 0,3-0,5мкс при любом значении частоты. А такой режим больше похож на ЧИМ – частотно-импульсную модуляцию, которая относится к релейному типу регулировки.

Если же наоборот, закоротить вход компаратора напряжения на корпус, исключив его из работы, а управлять только входом компаратора тока (вывод 7), то ключевые транзисторы будут открываться задающим генератором и закрываться по команде компаратора тока в каждом цикле! То есть, при отсутствии нагрузки, когда компаратор тока не срабатывает, транзисторы открываются надолго и закрываются на короткий промежуток времени. При перегрузке, наоборот — открываются и тут же надолго закрываются по команде компаратора тока. При каких-то средних значениях тока нагрузки ключи открываются генератором, и через какое-то время, после срабатывании компаратора тока, закрываются. Таким образом, в данном режиме мощность в нагрузке регулируется длительностью открытого состояния транзисторов — то есть, полноценной ШИМ.

Можно возразить, что это не ШИМ, так как в таком режиме частота не остаётся постоянной, а меняется — уменьшается с увеличением рабочего напряжения. Но при неизменном напряжении питания неизменной остаётся и частота, а стабилизация тока нагрузки осуществляется только изменением длительности импульса. По этому, можно считать, что это полноценная ШИМ. А изменение рабочей частоты при изменении напряжения питания объясняется непосредственной связью компаратора тока с задающим генератором.

При одновременном использовании обоих компараторов (в классической схеме) всё работает точно так же, а ключевой режим или ШИМ включаются в зависимости от того, какой компаратор сработает в данный момент: при перегрузке по напряжению — ключевой (ЧИМ), а при перегрузке по току — ШИМ.

Можно полностью исключить из работы компаратор напряжения, замкнув на корпус 5-й вывод микросхемы, а стабилизацию напряжения осуществлять так же посредством ШИМ, установив дополнительный транзистор. Стабилизация напряжения в этой схеме осуществляется изменением напряжения на входе компаратора тока. Опорным напряжением служит пороговое напряжение затвора полевого транзистора VT1. Выходное напряжение стабилизатора пропорционально произведению порогового напряжения транзистора на коэффициент деления резистивного делителя Rd1, Rd2 и рассчитывается по формуле:

Uout=Up(1+Rd2/Rd1), где

Up – Пороговое напряжение VT1 (1.7…2В).

Стабилизация тока по-прежнему зависит от сопротивления резистора R2.

Микросхема МС34063 имеет два входа, которые можно использовать для стабилизации тока.

Один вход имеет пороговое напряжение 1.25В (5-й pin), что для довольно мощных светодиодов не выгодно из-за потерь мощности. Например, при токе 700мА (для светодиода на 3Вт) имеем потери на резисторе-датчике тока величиной 1.25*0.7А=0.875Вт. Уже по этой причине теоретический КПД преобразователя не может быть выше 3Вт/(3Вт+0.875Вт)=77%. Реальный же — 60%…70%, что сравнимо с линейными стабилизаторами или просто резисторами-ограничителями тока.

Второй вход микросхемы имеет пороговое напряжение 0.3В (7 pin), и предназначен для защиты встроенного транзистора от перегрузки по току. Обычно, так эта микросхема и используется: вход с порогом 1.25В — для стабилизации напряжения или тока, а вход с порогом 0.3В — для защиты микросхемы от перегрузки. В данном варианте предлагается использовать для стабилизации тока вход с пороговым напряжением 0.3В, а другой, с напряжением 1.25В — просто отключить.

Конденсатор Сf – задаёт рабочую частоту. В документации на микросхему указана максимальная рабочая частота 100КГц, в табличных параметрах приведено среднее значение 33КГц, на графиках, показывающих зависимость длительности открытого и закрытого состояний ключа от ёмкости частотозадающего конденсатора, приведены минимальные значения 2мкс и 0,3мкс соответственно (при ёмкости 10пФ). Получается, что если взять последние значения, то период равен 2мкс+0.3мкс=2.3мкс, а это частота 435КГц.

Если учесть принцип работы микросхемы — триггер, устанавливаемый импульсом задающего генератора, и сбрасываемый компаратором тока, то получается, что эта мс является логической, а у логики рабочая частота не ниже единиц МГц. Выходит, что быстродействие будет ограничено только скоростными характеристиками ключевого транзистора. И если бы он не тянул частоту 400КГц, то и фронты со спадами импульсов были бы затянуты и КПД был бы очень низким из-за динамических потерь. Однако практика показала, что микросхемы разных производителей хорошо запускаются и работают вообще без частотозадающего конденсатора. А это позволило максимально повысить рабочую частоту — до 200КГц — 400КГц в зависимости от экземпляра микросхемы и её производителя. Ключевые транзисторы микросхемы держат такие частоты хорошо, так как фронты импульсов не превышают 0,1мкс, а спады — 0,12мкс при рабочей частоте 380КГц. Поэтому даже на таких повышенных частотах динамические потери в транзисторах достаточно малы, и основные потери и нагрев определяются повышенным напряжением насыщения ключевого транзистора (0.5…1В).

Резистор R3 ограничивает ток базы встроенного ключевого транзистора. Показанное на схеме включение этого резистора позволяет уменьшить рассеиваемую на нём мощность и повысить КПД стабилизатора. Падение напряжения на резисторе R3 равно разности между напряжением питания,  напряжением нагрузки и падением напряжения на микросхеме (0.9-2В). Например, при последовательной цепочке из 3-х светодиодов с общим падением напряжения 9…10В и питании от аккумулятора (12-14В) падение напряжения на резисторе R3 не превышает 4В. В результате, потери на резисторе R3 оказываются в несколько раз меньше, по сравнению с типовым включением, когда резистор включается между 8-м выводом микросхемы и напряжением питания.

Резистор R2 является датчиком тока нагрузки. Расчёт этого резистора особенностей не имеет. Следует только учитывать, что опорное напряжение токового входа микросхемы отличается у разных производителей.

 

Предельный КПД, получаемый в данном варианте стабилизатора, не превышает 90%. Дальнейшему росту КПД препятствуют повышенное напряжение насыщения ключевого транзистора — не менее 0.4…0.5В при токах до 0.5А и 0.8…1В при токах 1…1.5А. По этому основным греющимся элементом стабилизатора всегда является микросхема. Ощутимый нагрев бывает только при предельных для конкретного корпуса мощностях. Например, микросхема в корпусе SO-8 при токе нагрузки 1А нагревается до 100 градусов и без дополнительного теплоотвода циклически выключается встроенной защитой от перегрева. При токах до 0.5А…0.7А микросхема слегка тёплая, а при токах 0.3…0.4А вообще не греется. При повышенных токах нагрузки можно снизить рабочую частоту. В этом случае динамические потери ключевого транзистора значительно уменьшаются. Снижается общая мощность потерь и нагрев корпуса.

Внешними элементами, влияющими на КПД стабилизатора, являются диод D, дроссель L и резисторы Rsc и Rb . Поэтому диод следует выбирать с малым прямым напряжением (диод Шоттки), а дроссель – с как можно низким сопротивлением обмотки. Из-за относительно маломощного ключевого транзистора, встроенного в микросхему, не следует сильно уменьшать индуктивность дросселя, так как при этом увеличивается пиковый ток транзистора при прежнем среднем его значении и растёт напряжение насыщения. В результате, увеличиваются потери на транзисторе, и падает общий КПД.

Увеличение индуктивности дросселя позволяет так же увеличить и максимальный ток нагрузки вплоть до предельного значения тока ключевого транзистора микросхемы (1.5А). При увеличении индуктивности дросселя форма тока ключевого транзистора меняется с полностью треугольной до полностью прямоугольной. А так как площадь прямоугольника в 2 раза больше площади треугольника (при одинаковых высоте и основании), то среднее значение тока транзистора (и нагрузки) можно увеличить в 2 раза при неизменной амплитуде импульсов тока. То есть, при треугольной форме импульса амплитудой 1.5А средний ток транзистора и нагрузки получается:

Iн=1.5А/2*k,

где k – максимальный коэффициент заполнения импульсов, равный 0.9 для данной микросхемы.

В результате максимальный ток нагрузки не превышает:

Iн=1.5А/2*0.9=0.675А.

И любое увеличение тока нагрузки свыше этого значения влечёт превышение максимального тока ключевого транзистора микросхемы.

Поэтому во всех даташитах на данную микросхему указывается максимальный ток нагрузки 0.75А.

Увеличив индуктивность дросселя так, что бы ток транзистора стал прямоугольным, можем убрать двойку из формулы максимального тока и получить:

Iн=1.5А*k=1.5А*0.9=1.35А.

Следует учитывать, что при значительном увеличении индуктивности дросселя несколько увеличиваются и его габариты. Тем не менее, иногда оказывается проще и дешевле для увеличения тока нагрузки увеличить размеры дросселя, чем ставить дополнительный мощный транзистор. Естественно, при требуемых токах нагрузки более 1.5А кроме как установкой дополнительного транзистора (или другой микросхемы-контроллера) не обойтись, а если вы поставлены перед выбором: ток нагрузки 1.4А или другая микросхема, то стоит попробовать сначала решить задачу увеличением индуктивности, пойдя на увеличение размеров дросселя.

 

Включение-выключение

Выключение стабилизатора на микросхеме МС34063 реализуется подачей напряжения на 3-й вывод.

На 3-м выводе микросхемы действует пилообразное напряжение заряда и разряда частотозадающего конденсатора. Когда напряжение достигает порогового значения 1.25В, начинается разряд конденсатора, а выходной транзистор микросхемы закрывается. Значит, для выключения стабилизатора нужно подать на 3-й вход микросхемы напряжение не менее 1.25В. Согласно данным даташитов на микросхему времязадающий конденсатора разряжается током максимум 0,26мА. Значит, при подаче на 3-й вывод внешнего напряжения через резистор, для получения выключающего напряжения не менее 1.25В ток через резистор должен быть не менее 0.26мА. В результате имеем две основные цифры для расчёта внешнего резистора. Например, при напряжении питания стабилизатора 12…15В, стабилизатор должен быть надёжно выключен при минимальном значении – при 12В. В результате, сопротивление дополнительного резистора находим из выражения:

R=(Uп-Uvd1-1.25В)/0.26мА=(12В-0.7В-1.25В)/0.26мА=39КОм.

Для надёжного выключения микросхемы сопротивление резистора выбираем меньше вычисленного значения. На фрагменте схемы Рис.12 сопротивление резистора равно 27КОм. При таком сопротивлении напряжение выключения получается около 9В. Значит, при напряжении питания стабилизатора 12В можно надеяться на надёжное выключение стабилизатора с помощью данной схемы. При управлении стабилизатором от микроконтроллера резистор R нужно пересчитать для напряжения 5В. Входное сопротивление по 3-му входу микросхемы довольно большое и любое подключение внешних элементов может влиять на формирование пилообразного напряжения. Для развязки цепей управления от микросхемы и, тем самым, сохранении прежней помехоустойчивости служит диод VD1. Управление стабилизатором можно осуществлять либо подачей постоянного напряжения на левый вывод резистора R,  либо закорачиванием на корпус точки соединения резистора R с диодом VD1 (при постоянном наличии напряжения на левом выводе резистора R). Стабилитрон VD2 призван защитить вход микросхемы от попадания высокого напряжения. При низких напряжениях питания он не нужен.

Регулировка тока нагрузки

Так как опорное напряжение компаратора тока микросхемы равно сумме напряжений на резисторах R1 и R3, то изменением тока смещения резистора R3 можно регулировать ток нагрузки. Возможны два варианта регулировки – переменным резистором и постоянным напряжением.

  Для регулировки тока нагрузки переменным резистором нужно постоянный резистор R2 заменить сборкой резисторов R2’. В этом случае, при изменении сопротивления переменного резистора, общее сопротивление резистора R2’ будет меняться в пределах 27…37КОм, а ток стока транзистора VT1 (и резистора R3) будет меняться в пределах 1.3В/27…37КОм=0.048…0,035мА. При этом на резисторе R3 напряжение смещения будет меняться в пределах 0.048…0,035мА*10КОм=0.48…0,35В. Для срабатывания компаратора тока микросхемы на резисторе-датчике тока R1 должно падать напряжение 0.45-0.48…0,35В=0…0.1В. При сопротивлении R1=0.1Ом такое напряжение будет падать на нём при протекании через него тока нагрузки в пределах 0…0.1В/0.1Ом=0…1А. То есть, меняя сопротивление переменного резистора R2’ в пределах 27…37КОм сможем регулировать ток нагрузки в пределах 0…1А. Для регулировки тока нагрузки постоянным напряжением нужно в затвор транзистора VT1 поставить делитель напряжения Rd1Rd2. С помощь этого делителя можно согласовать любое напряжение управления с требуемым для VT1. Ниже приведены формулы для расчёта:

Upc = URsc + UR3

URsc = Ih * Rsc

UR3 = Id * R3

Id = UR2 / 2

Ug = UR2 — Uvt

Ua = Ug * (1 + Rd2 / Rd1)

Где

Upc  — Пороговое напряжение компаратора тока

URsc  — Напряжение на датчике тока

UR3 — Напряжение на резисторе R3

Ih — Ток нагрузки

Id — Ток стока транзистора VT1

UR2 — Напряжение на резисторе R2

Ug — Напряжение на затворе транзистора VT1

Uvt — Пороговое напряжение транзистора VT1

Ua — Напряжение управления

 

 

 

 

DC-DC преобразователь на MC34063 — AVR devices

Когда перед разработчиком какого либо устройства, встает вопрос «Как получить нужное напряжение?», то обычно ответ прост — линейный стабилизатор. Их несомненный плюс это маленькая стоимость и минимальная обвязка.  Но кроме этих достоинств, у них есть недостаток — сильный нагрев. Очень много драгоценной энергии, линейные  стабилизаторы превращают в тепло.  Поэтому использование таких стабилизаторов, в устройствах с батарейным питанием не желательно. Более экономичными являются DC-DC преобразователи. О них то и пойдёт речь.

Вид сзади:

О принципах работы уже всё сказано до меня, так что я не буду на этом останавливаться. Скажу лишь что  такие преобразователи бывают Step-UP (повышающие)  и Step-Down (понижающие). Меня конечно же заинтересовали последние. Что получилось вы можете видеть на рисунке выше. Схемы преобразователей были мной заботливо перерисованы из даташита 🙂 Начнем с Step-Down преобразователя:

Как видите ничего хитрого. Резисторы R3 и R2 образуют делитель с которого снимается напряжение и поступает на ногу обратной связи микросхемы MC34063. Соответственно изменяя номиналы этих резисторов можно менять напряжение на выходе преобразователя. Резистор R1 служит для того чтоб защитить микросхему от выхода из строя в случае короткого замыкания. Если впаять вместо него перемычку то защита будет отключена и схема может испустить волшебный дымок на котором работает вся электроника. 🙂 Чем больше сопротивление этого резистора, тем меньший ток сможет отдать преобразователь.  При его сопротивлении 0.3 ома, ток не превысит пол ампера. Кстати все эти резисторы может рассчитать моя программа. Дроссель я брал готовый но ни кто не запрещает его намотать самому. Главное чтоб он был на нужный ток. Диод так же любой Шотки и так же на нужный ток. В крайнем случае можно запараллелить два маломощных диода. Напряжения конденсаторов не указаны на схеме, их нужно выбирать исходя из входного и выходного  напряжения. Лучше брать с двойным запасом.
Step-UP преобразователь имеет в своей схеме незначительные отличия:

Требования к деталям, те же что и для Step-Down. Что касается качества получаемого напряжения на выходе,то оно достаточно стабильно и пульсации как говорят — небольшие. (сам на счёт пульсаций не могу сказать так как нет у меня осциллографа пока). Вопросы, предложения в комментарии.

Печатная плата DC-DC StepDown преобразователя
Программа для расчёта преобразователей на микросхеме MC34063
Аналогичный калькулятор для расчётов в браузере

MC34063 | Электроника для всех

DC-DC преобразование
Для изменения напряжения постоянного тока с минимальными потерями используются DC-DC преобразователи, работающие по принципу Широтно-Импульсной Модуляции (ШИМ, она же PWM по басурмански). Если не читал мои прошлые статьи, где я подробно разжевал принцип работы ШИМ, то я кратенько тебе напомню. Основной принцип тут в том, что напряжение подается не сплошным потоком, как в линейных стабилизаторах, а краткими импульсами и с большой частотой.
Готовый девайс

То есть у тебя на выходе ШИМ контроллера, например, сначала в течении десяти микросекунд напряжение, к примеру, двенадцать вольт, потом идет пауза. Скажем, те же десять микросекунд, когда на выходе напряжения вообще нет. Затем все повторяется, словно мы быстро-быстро включаем и выключаем рубильник.

Таким образом у нас получаются прямоугольные импульсы. Если вспомнить матан, а конкретно интегрирование, то после интегрирования этих импульсов мы получим площадь под фигурой очерченной импульсами. Таким образом, меняя ширину импульсов и пропуская их через интегратор, можно плавно менять напряжения от нуля до максимума с любым шагом и практически без потерь.
В качестве интегратора служит конденсатор, он заряжается на пике, а на паузах будет отдавать энергию в цепь. Также туда всегда последовательно ставят дроссель, который тоже служит источником энергии, только он запасает и отдает ток. Поэтому такие преобразователи при небольших габаритах легко питают мощную нагрузку и при этом почти не расходуют энергию на лишний нагрев.

Если не догнал, то я для простоты переложил это в понятное «канализационное русло». Смотри на картинку, где ключевой транзистор ШИМ контроллера похож на вентиль, он открывает и закрывает канал. Конденсатор это банка, накапливающая энергию. Дроссель это массивная турбина, которая, будучи разогнанной потоком, при открытом вентиле, за счет своей инерции прогоняет воду по трубам и после закрытия вентиля.

Конечно, самостоятельно разработать такой источник питания сложно, требуется неслабое образование в области электроники, но не стоит напрягаться по этому поводу. Умные дядьки из Motorola, STM, Dallas и прочих Philips’ов придумали все за нас и выпустили уже готовые микросхемы содержащие в себе ШИМ контроллер. Тебе остается его лишь припаять и добавить обвески, которая задает параметры работы, причем изобретать самому ничего не надо, в datasheet’ах подробно расписано что и как подключать, какие номиналы выбирать, а иногда даже дают готовый рисунок печатной платы. Надо лишь немного знать английский 🙂

Мощное Зарядное Устройство Для Смартфонов На MC34063A

Как-то давно я делал похожее устройство того же функционала, но в базовой комплектации ему очень не хватало тока для полноценной зарядки смартфона, всего около 500 мА. Устройство пыхтело изо всех сил, но микросхема перегревалась, и это отрицательно сказывалось на КПД и работоспособности в целом.

Напоминаю, чтобы не заморачиваться — можно купить крутой готовый PowerBank на свой вкус 🙂

Тут одному товарищу на курсовую работу понадобилось сделать Power Bank, поэтому за основу была взята схема с внешним ключевым элементом на полевом транзисторе.

Просто так подключить полевой транзистор на выход открытого эмиттера не получится, применён драйвер, выполненный из диода и pnp транзистора. Схема представлена ниже, все необходимые расчётные формулы указаны на картинке, в дополнение могу предложить калькулятор, по которому можно рассчитать резисторы обратной связи для получения необходимого напряжения (для зарядки смартфона необходимо 5 В). Для 5 Вольт выходного напряжения подойдут резисторы на 1к и 3 к, 1к — тот, который на землю. Как пользоваться калькулятором — написано по первой ссылке в статье.

 

Развести плату не составило труда, фото ниже, файл в конце статьи.

 

Использовались smd элементы вперемешку с выводными.

Конечная реализация устройства позволяет заряжать любой смартфон при соответствующем переходнике. Ток вполне может доходить до 2А, при этом ни одна деталь не греется. Конкретно в этой реализации на выходе был USB разъём.

По сути вы видите STEP-UP преобразователь на MCP34063A + MOSFET транзистор для усиления тока.

 

 

 

Если нужно питать от маленького напряжения, как от литий-ионного аккумулятора, на затвор подавать импульсы через диод Шоттки.

Файл платы в формате lay.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *