Lm393M описание на русском – LM393N / LM393D — ОУ и Компараторы — МИКРОСХЕМЫ — Электронные компоненты (каталог)

Содержание

Lm393p описание на русском принцип работы

Автор: Сергей · Опубликовано 27.01.2017 · Обновлено 10.07.2019

Модуль освещенности на LM393, используется для измерения интенсивности света в различных устройствах, таких как, автоматизация света (включении света ночью), роботах (определения дня или ночи) и приборов контролирующих уровень освещенности. Измерения осуществляется с помощью светочувствительного элемента (фоторезистора), который меняет сопротивление в зависимости от освещенности.

Технические параметры

► Напряжение питания: 3.3 В

5.5 В
► Потребляемый ток: 10 мА
► Цифрового выход: TTL (лог 1 или лог 0)
► Аналогового выход: 0 В … Vcc
► Диаметр монтажного отверстия: 2.5 мм
► Выходной ток: 15 мА
► Габариты: 42мм х 15мм х 8мм

Общие сведения

Существует два модуля, визуально отличие только в количестве выводов (3 pin и 4 pin), дополнительный вывод добавлен, для снятие прямых показаний с фоторезистора (аналоговый выход), в статье пойдет речь о четырех контактом варианте модуля. В этих двух модулей, измерение осуществляется с помощью фоторезистора, который изменяет напряжение в цепи в зависимости от количества света, попадающего на него. Чтобы представить, как свет будет влиять на фоторезистор, приведу краткую таблицу.

Модуль освещенности с четырьмя выводами содержит два выходных контакты, аналоговый и цифровой и два контакта для подключения питания. Для считывания аналогово сигнала предусмотрен отдельный вывод «AO», с которого можно считать показания напряжения с 0 В … 3.3 В или 5 В в зависимости от используемого источника питания. Цифровой вывод DO, устанавливается в лог «0» или лог «1», в зависимости от яркости, чувствительность выхода, можно регулировать с помощью поворотного потенциометра. Выходной ток цифрового выхода, способен выдать более 15 мА, что очень упрощает использования модуля и дает возможность использовать его минуя контроллер Arduino и подключая его напрямую ко входу однокональному реле или одному из входов двухконального реле. Принципиальную схему модуля освещенности на LM393 с 3 pin и 4 pin, показана ниже.

Принципиальная схема модуля освещенности на LM393 с 4 pin

Принципиальная схема модуля освещенности на LM393 с 3 pin

Теперь, как же работает схема, фоторезистор показан Foto (IN). Основная микросхема модулей, это компаратор LM393 (U1), который производит сравнение уровней напряжений на входах INA- и INA+. Чувствительность порога срабатывания задается с помощью потенциометром R2 и в результате сравнений на выходе D0 микросхемы U1, формируется лог «0» или лог «2», который поступает на контакт D0 разъема J1.

Назначение J1 (в исполнении 4 pin)
► VCC: «+» питание модуля
► GND: «-» питание модуля
► D0: цифровой выход
► A0: аналоговый выход

Назначение J1 (в исполнении 3 pin)
► VCC: «+» питание модуля
► GND: «-» питание модуля
► D0: цифровой выход

Подключение модуля освещенности к Arduino

Необходимые детали:
► Arduino UNO R3 x 1 шт.
► Модуль освещенности, LM393, 4 pin x 1 шт.
► Провод DuPont, 2,54 мм, 20 см, F-M (Female — Male) x 1 шт.
► Кабель USB 2.0 A-B x 1 шт.

Подключение:
В данном примере буду использовать модуль освещенности, LM393, 4 pin и Arduino UNO R3, все данные будут передаваться в «Мониторинг порта». Схема не сложная, необходимо всего четыре провода, сначала подключаем шину A0 в порт A0 (Arduino UNO) и D0 в порт А1 (Arduino UNO), осталось подключить питание GND к GND и VCC к 5V (можно записать и от 3.3В), схема собрана, теперь надо подготовить программную часть.

Запускаем среду разработки и загружаем данный скетч, затем открываем мониторинг порта.

Скачать скетч

В мониторинг порта, можно увидеть все изменения джойстика и нажатия кнопки.

Купить на Aliexpress
Контроллер Arduino UNO R3
Комплект проводов DuPont, 2,54 мм, 20 см
Модуль освещенности, LM393, 3 pin
Модуль освещенности, LM393, 4 pin

Купить в Самаре и области
Купить контроллер Arduino UNO R3
Купить провода DuPont, 2,54 мм, 20 см
Купить модуль освещенности, LM393, 3 pin
Купить модуль освещенности, LM393, 4 pin

Как работает компаратор напряжения

Во многих описаниях компаратор сравнивается с обычными рычажными весами, как на базаре: на одну чашу кладется эталон – гири, а на другую продавец начинает подкладывать товар, например, картошку. Как только вес товара становится равным весу гирь, точнее чуть больше, чашка с гирями устремляется вверх. Взвешивание закончено.

То же самое происходит и с компаратором, только в этом случае роль гирь выполняет опорное напряжение, а в качестве картошки используется входной сигнал. Как только на выходе компаратора появляется логическая единица, то считается, что сравнение напряжений произошло. Вот это и есть то самое «чуть больше», которое в справочниках называется «пороговая чувствительность компаратора».

Проверка компаратора напряжения

Начинающие радиолюбители – электронщики часто спрашивают, как проверить ту или иную деталь. Для проверки компаратора какой-то сложной схемы собирать не надо. Достаточно на выход компаратора подключить вольтметр, а на входы подать регулируемые напряжения, и определить, работает компаратор или нет. И уж, конечно, будет совсем хорошо, если еще не забыть подать на компаратор напряжение питания!

Однако, при этом не следует забывать, что многие компараторы имеют выходной транзистор, у которого выводы коллектора и эммитера просто «висят в воздухе», о чем было рассказано в статье «Аналоговые компараторы». Поэтому, эти выводы надо соответствующим образом подключить. Как это сделать показано на рисунке 1.

Рисунок 1. Схема подключения компаратора

На инверсный вход компаратора подано опорное напряжение, полученное с делителя R2, R3 из напряжения питания +5В. В результате на инверсном входе получается 2,5В. Предположим, что движок переменного резистора R1 находится в нижнем по схеме положении, т.е. напряжение на нем 0В. Такое же напряжение и на прямом входе компаратора.

Если теперь вращением движка переменного резистора R1 постепенно увеличивать напряжение на прямом входе компаратора, то при достижении 2,5В на выходе компаратора появится логическая 1, которая откроет выходной транзистор, зажжется светодиод HL1.

Если теперь движок R1 вращать в сторону уменьшения напряжения, то в определенный момент светодиод HL1, несомненно, погаснет. Это говорит об исправной работе компаратора.

Эксперимент можно несколько усложнить: измерить вольтметром напряжение на прямом входе компаратора, и зафиксировать при каком напряжении светодиод засветится, а при каком погаснет. Разница этих напряжений и будет гистерезисом компаратора. Кстати, некоторые компараторы имеют специальный вывод (pin) для регулировки величины гистерезиса.

Для проведения такого опыта понадобится цифровой вольтметр, способный «поймать» милливольты, многооборотный подстроечный резистор и изрядное терпение исполнителя. Если терпения для проведения такого эксперимента недостаточно, можно проделать следующий, куда более простой: поменять местами прямой и инверсный входы, и, вращая переменный резистор, понаблюдать, как ведет себя светодиод, т.е. выход компаратора.

На рисунке 1 показана просто структурная схема, поэтому номера выводов не указаны. При проверке реального компаратора придется разобраться с его цоколевкой (распиновкой). Далее будут рассмотрены некоторые практические схемы и приведено краткое описание их работы.

Часто в одном корпусе располагается несколько компараторов, два или четыре, что позволяет создавать различные устройства, не устанавливая на плате лишних микросхем. Компараторы могут быть независимы друг от друга, но в некоторых случаях имеют внутренние соединения. В качестве такой микросхемы рассмотрим сдвоенный компаратор MAX933.

Компаратор MAX933

В одном корпусе микросхемы «проживают» сразу два компаратора. Кроме собственно компараторов внутри микросхемы имеется встроенный источник опорного напряжения 1.182V. На рисунке он показан в виде стабилитрона, который уже подключен внутри микросхемы: к верхнему компаратору на инверсный вход, а к нижнему на прямой. Это позволяет легко создать многоуровневый компаратор по принципу «Мало», «Норма», «Много» (undervoltage/overvoltage detectors). Такие компараторы называются оконными, поскольку положение «норма» находится в «окне» между «мало» и «много».

Исследование компаратора программой Multisim

На рисунке 2 показано измерение опорного напряжения, произведенного с помощью программы – симулятора Multisim. Измерение проводится мультиметром XMM2, который показывает 1.182V, что полностью соответствует значению, указанному в Data Sheet компаратора. Вывод 5 HYST,- регулировка гистерезиса, в данном случае не используется.

С помощью переключателя S1 можно задавать уровень входного напряжения, причем, сразу на обоих компараторах: замкнутый переключатель подает на входы низкий уровень (меньше, чем опорное напряжение) как показано на рисунке 3, разомкнутому состоянию соответствует высокий уровень, — рисунок 4. Состояние выходов компараторов показываются мультиметрами XMM1, XMM2.

Комментарии к рисункам совсем излишни, — чтобы понять логику работы компараторов достаточно внимательно рассмотреть показания мультиметров и положение переключателя S1. Следует только добавить, что такую схему можно рекомендовать для проверки реального «железного» компаратора.

Схема проверки напряжения

Схема такого компаратора, показанного в Data Sheet, приведена на рисунке 5.

Для выходных сигналов пониженного напряжения (OUTA) и перенапряжения (OUTB) активным уровнем сигнала является низкий, о чем говорит подчеркивание сигналов сверху. Иногда для этих целей используется знак « — » или « / » перед названием сигнала. Эти сигналы можно назвать аварийными.

Сигнал POWER GOOD получается на выходе логического элемента И, когда оба сигнала аварии имеют уровень логической единицы. Активным уровнем сигнала POWER GOOD является высокий уровень.

Если хотя бы один из аварийных сигналов имеет низкий уровень, то сигнал POWER GOOD исчезнет,- станет тоже низким. Это лишний раз дает возможность убедиться, что логическая схема И для низких уровней является логическим ИЛИ.

Рисунок 5. Схема компаратора

Контролируемое входное напряжение подается через делитель R1…R3, величина резисторов которого рассчитывается с учетом диапазона контролируемых напряжений. Методика расчета приведена, даже с примером, в Data Sheet.

Для уменьшения дребезга во время переключения величина гистерезиса задается с помощью делителя R4, R5. Эти резисторы рассчитываются по формулам, также приведенным в Data Sheet. Для указанных на схеме значений, величина гистерезиса составляет 50mV.

Схема управления резервным питанием

Подобные схемы применяются, например, в системах сигнализации. Алгоритм работы этих схем достаточно прост. При пропадании сетевого напряжения охранная система переключается на работу от аккумуляторов, а при восстановлении сети вновь работает от блока питания, при этом осуществляется зарядка аккумуляторной батареи. Для осуществления такого алгоритма надо оценить, как минимум два фактора: наличие сетевого напряжения и состояние аккумулятора.

Функциональная схема управления показана на рисунке 6.

Рисунок 6. Схема управления резервным питанием на одной микросхеме

Выпрямленное напряжение +9VDC через диод подается на стабилизатор напряжения, от которого питается охранное устройство. Делитель R1, R2 является в данном случае датчиком сетевого напряжения, за которым следит нижний по рисунку компаратор с выходом OUTA. Когда сетевое напряжение есть, и находится в пределах разумного, на выходе нижнего компаратора логическая единица, которая открывает полевой транзистор Q1, через который заряжается аккумулятор. Этот же сигнал управляет индикатором работы от сети.

В случае пропадания или понижения сетевого напряжения, на выходе компаратора появляется логический ноль, полевой транзистор закрывается, прекращается заряд аккумулятора, индикатор работы от сети гаснет или приобретает другой цвет. Возможно также еще и появление звукового сигнала.

Заряженный аккумулятор через коммутирующий диод подключается к стабилизатору, и работа устройства продолжается в автономном режиме. Но чтобы уберечь аккумулятор от полного разряда, за его состоянием следит другой компаратор,- верхний по схеме.

Пока аккумулятор еще не разряжен напряжение на инверсном входе компаратора B выше опорного, поэтому на выходе компаратора низкий уровень, что соответствует нормальному заряду батарей. По мере разряда напряжение на делителе R3, R4 падает, и когда станет ниже опорного, на выходе компаратора установится высокий уровень, что укажет на разряд аккумулятора. Чаще всего такое состояние индицируется назойливым писком прибора.

Схема выдержки времени

Показана на рисунке 7.

Рисунок 7. Схема выдержки времени на компараторе

Работает схема следующим образом. При нажатии на кнопку MOMENTARY SWITCH конденсатор C заряжается до напряжения источника питания. Это приводит к тому, что напряжение на входе IN+ становится выше, чем опорное напряжение на входе IN-. Поэтому на выходе OUT устанавливается высокий уровень.

После отпускания кнопки конденсатор начинает разряжаться через резистор R , и когда напряжение на нем, а, следовательно, на входе IN+ упадет ниже опорного напряжения на входе IN-, на выходе компаратора OUT установится низкий уровень. При повторном нажатии на кнопку все повторяется еще раз.

Опорное напряжение на входе IN- устанавливается с помощью делителя из трех резисторов и при указанных на схеме номиналах составляет 100мВ. Этим же делителем устанавливается и гистерезис компаратора (HYST) в пределах 50мВ. Таким образом, конденсатор C разряжается до напряжения 100 – 50 = 50 мВ.

Ток потребления самого устройства невелик, не более 35 микроампер, в то время, как выходной ток может достигать 40 мА.

Выдержка времени рассчитывается по формуле R * C * 4.6 сек. В качестве примера можно привести расчет с такими данными: 2MΩ * 10µF * 4.6 = 92 сек. Если сопротивление указано в мегаомах, емкость в микрофарадах, то результат получается в секундах. Но это только расчетный результат. Фактическое время будет зависеть от напряжения источника питания и от качества конденсатора, от его тока утечки.

Несколько простых схем на компараторах

Основой схем, которые будут рассмотрены далее, является градиентное реле, — схема, реагирующая не на присутствие какого-либо сигнала, а на скорость его изменения. Одним из таких датчиков является фотореле, схема которого показана на рисунке 8.

Рисунок 8. Схема фотореле на компараторе

Входной сигнал получается с делителя, образованного резистором R1 и фотодиодом VD3. Общая точка этого делителя через диоды VD1 и VD2 подключена к прямому и инвертирующему входу компаратора DA1. Таким образом, получается, что на прямом и инверсном входе одно и то же напряжение, т.е. разницы между напряжениями на входах нет. При таком состоянии на входах чувствительность компаратора близка к максимальной.

Чтобы изменить состояние компаратора потребуется разница напряжений на входах в единицы милливольт. Это примерно, как столкнуть мизинцем в пропасть, висящий на краю камень. А пока на выходе компаратора присутствует логический ноль.

Если вдруг изменилась освещенность, напряжение на фотодиоде тоже изменилось, предположим, что в сторону увеличения. Казалось бы, что вместе с этим изменится и напряжение на обоих входах компаратора, причем сразу. Поэтому, желаемой разницы напряжений на входах не получится, а, следовательно, и не изменится состояние выхода компаратора.

Все бы это было так, если не обращать внимания на конденсатор C1 и резистор R3. Благодаря этой RC цепочке, напряжение на инверсном входе компаратора возрастет с некоторой задержкой относительно прямого входа. На время задержки напряжение на прямом входе будет больше, чем на инверсном. В результате на выходе компаратора появится логическая единица. Эта единица будет удерживаться недолго, как раз на время задержки, обусловленной RC цепочкой.

Подобное фотореле используется в тех случаях, когда освещенность меняется достаточно быстро. Например, в охранных устройствах или датчиках готовой продукции на конвейерах, — устройство будет реагировать на прерывание светового потока. Еще один вариант, — это как дополнение к системе видеонаблюдения. Если направить фотодатчик на экран монитора, то он будет фиксировать изменение яркости и включать, например, звуковой сигнал, привлекая внимание оператора.

Рассмотренное фотореле очень просто превратить в датчик изменения температуры, например в пожарной сигнализации. Для этого достаточно заменить фотодиод на терморезистор. При этом номинал резистора R1 должен быть равен номиналу терморезистора (обычно указывается для температуры 25C°). Схема этого датчика показана на рисунке 9.

Рисунок 9. Схема датчика измерения температуры на компараторе

Принцип и смысл работы совершенно такой же, как у описанного выше фотодатчика. Но в этой конструкции показано и простейшее выходное устройство, — это тиристор VS1 и реле K1. При срабатывании компаратора открывается тиристор VS1, которое включает реле K1.

Поскольку тиристор в данном случае работает в цепи постоянного тока, то даже при окончании управляющего импульса от компаратора тиристор останется открытым, а реле K1 включенным. Для отключения реле придется нажать кнопку SB1 либо просто обесточить всю схему.

Вместо терморезистора можно применить магниторезистор, например СМ-1, реагирующий, на магнитное поле. Тогда получится магниточувствительное градиентное реле. Магниторезисторы в прошлом XX веке применялись в клавиатурах некоторых ЭВМ.

Если применить другие датчики, то на базе градиентного реле можно легко изготовить совсем другие устройства, реагирующие на изменение электрического поля, на звуковые колебания. С помощью пьезодатчиков легко создать датчики удара, и сейсмических колебаний.

Достаточно просто с помощью компараторов получается преобразование «аналогового» сигнала в «цифровой». Подобная схема показана на рисунке 10.

Рисунок 10. Схема преобразования «аналогового» сигнала в «цифровой» с использованием компаратора

На рисунке 11 показана такая же схема, только полярность выходных импульсов у нее обратная по отношению к предыдущей. Это достигается просто другим включением входов.

Обе схемы преобразуют амплитуду входного сигнала в ширину выходного импульса. Такое преобразование достаточно часто используется в различных электронных схемах. Прежде всего, в измерительных приборах, импульсных блоках питания, цифровых усилителях.

Частотный диапазон устройств находится в пределе 5…200КГц, амплитуда входного сигнала в диапазоне 2…2,5В. При использовании германиевого диода преобразование амплитуды в ширину импульса начинается с уровня 80…90мВ, в то время как для кремниевого диода это значение составляет 250…270мВ.

Рабочая полоса частот устройства определяется номиналами конденсаторов C1, C2. Собранное из исправных деталей устройство не требует наладки и установки порога срабатывания.

Прошло почти два года с тех пор, как я пытался приручить операционный усилитель УД708 для сравнения двух сигналов. Знаний тогда было мало, поэтому времени уходило много, а главное — еще и безрезультатно. Но в итоге для своей задачи я смог «договориться» с компаратором LM393N. А на днях перебирал поделку, в которой впервые использовал эту микросхему, и решил вспомнить, как работает компаратор. Заодно и другим рассказать.
Компаратор — это устройство, сравнивающее два аналоговых сигнала. В самом простом случае — операционный усилитель без обратных связей. На входы ему подаются два напряжения — эталонное, оно же опорное (известно заранее) и измеряемое. На выходе возможны два состояния:

«1» — когда напряжение на прямом входе больше, чем на инвертирующем;
«0» — когда напряжение на прямом входе меньше, чем на инвертирующем.

Некоторые компараторы самостоятельно формируют уровни логических нуля и единицы (например, «ноль» — это ноль, «единица» — плюс пять вольт), но LM393 — с открытым коллектором. Ей для создания выходного напряжения нужен внешний резистор, подключающийся либо к «плюсу» питания, либо к другому «плюсу» (в разумных пределах, конечно).

Первые две схемы — каноничное включение нагрузки под открытый коллектор. Я подключал внешний резистор к питающему «плюсу».

Включение 1


В корпусе микросхемы содержатся два компаратора.
IN (-) — инвертирующий вход, IN (+) — прямой. Сейчас делитель подключен на инвертирующий вход, измеряемое напряжение — на прямой.
R1 и R2 — резистивный делитель, с которого идет опорное напряжение.
R3 — внешний резистор. Я для экспериментов взял 1 кОм.
R4 — токоограничивающий резистор для светодиода. Для другой нагрузки (например, обмотки реле) он может оказаться ненужным.


Питание — 9 вольт. С делителя (желтый провод) идут 6 вольт. Синий провод (измеряемое напряжение) идет к потенциометру ручной регулировки.
хемы на фотографиях могут несколько отличаться друг от друга — было две серии экспериментов).


Напряжение на прямом входе (0 В) меньше, чем напряжение на инвертирующем (6 В). Компаратор выдает «ноль».


Напряжение на прямом входе (6,14 В) стало больше, чем на инвертирующем. Компаратор «перещелкнулся» на «единицу», светодиод включился.

Где можно применить: индикатор закипания охлаждающей жидкости.


Опорное напряжение задается равным напряжению, которое выдает датчик температуры при ста градусах.

Включение 2


Измеряемое напряжение подается на инвертирующий вход, опорное — на прямой.


Пока напряжение на инвертирующем входе меньше, чем на прямом, компаратор выдает «единицу», и светодиод горит. В противном случае — «ноль».

Где можно применить: индикатор низкого давления масла.


Опорное напряжение задается равным напряжению, которое выдает датчик давления при критически низком давлении в системе.

Индикатор «топливо на исходе».


Опорное напряжение задается равным напряжению, которое выдает датчик уровня при малом остатке топлива в баке.

Индикатор разряда батареи. Здесь опорное напряжение лучше создать стабилитроном, а измеряемое подавать через делитель. Очень хорошо об этом написано здесь. Такую железяку я собирал — работает.

И еще две схемы — неканоничное включение нагрузки: светодиод через резистор подключается непосредственно к выходу компаратора. В этом случае логика его работы обратна.

«0» — когда напряжение на прямом входе больше, чем на инвертирующем;
«1» — когда напряжение на прямом входе меньше, чем на инвертирующем.

Включение 3


Опорное напряжение — на инвертирующем входе, измеряемое — на прямом.


Напряжение на прямом входе меньше, чем на инвертирующем — светодиод горит. В противном случае — нет.

Включение 4


Измеряемое напряжение подается на инвертирующий вход, опорное — на прямой.


Пока напряжение на инвертирующем входе меньше, чем на прямом, компаратор выдает «ноль», и светодиод не горит. Иначе — «единица».

Вообще, лучше, конечно, пользоваться первыми двумя общепринятыми схемами, чтобы не было путаницы.


Еще один важный момент — подключение нагрузки (светодиода) к другому напряжению (как мог, изобразил 24 вольта). Справедливо для любого из ранее изображенных включений.

О нагрузке. В даташите о максимальном токе коллектора сказано, что больше 6-20 мА микросхема не выдаст. То есть включить один светодиод — не проблема, а вот что побольше…


Кусок светодиодной ленты, подключенный прямо к выходу компаратора (по третьей или четвертой схеме, без резистора R3) светил слабо (1 мА). Пришлось поддать напряжения до 12 вольт, и тогда ток коллектора вырос до 14 мА. При подключении ленты напрямую к блоку питания — 32 мА. Таким образом, как ни крути, а максимум, что можно получить конкретно от этой LM-ки — 14 мА.

Вывод — что-то прожорливое есть смысл пускать через транзистор, загнанный в ключевой режим. При этом каскаду с общим эмиттером, инвертирующему сигнал, как нельзя лучше подойдет третья или четвертая схемы включения. Ведь если сигнал инвертировать дважды — получится опять исходный сигнал.
Например, на прямом входе компаратора «единица» (по привычной логике — на прямом входе напряжение больше, чем на инвертирующем). Третья схема сделает из нее «ноль» на выходе. А каскад с общим эмиттером, «перевернув» этот «ноль», опять даст «единицу».


Стрелка цепляется к выходу компаратора (R1 — это R3 из предыдущей схемы). R2, возможно, придется подобрать: если он будет слишком маленьким, то транзистор может сгореть, а если слишком большим — не откроется (можно попробовать 4,7 кОм). При подаче «единицы» в базе транзистора должно быть примерно 0,7 В (для кремния). К R3 тоже есть вопросы, но слишком малым и он не должен быть.


Моделирование. Когда на входе «ноль» (а «ноль» третьей и четвертой схемы — это в нормальном включении «единица»), то на выходе — «единица», светодиод работает. С чего начали, к тому и пришли — «единица» опять стала сама собой.


Теперь, когда на входе «единица», то на выходе «ноль». Вот она, знаменитая инверсия каскада с общим эмиттером!

А если включать нагрузку в коллектор транзистора, то «единицы» и «нули» по входу и выходу будут совпадать.
В общем, простор для творчества — колоссальный.

LM393 — Cдвоенный компаратор — DataSheet

Микросхемы серий: LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V

LM193

1 Особенности

  • Одно или двух полярное питание
  • Широкий диапазон питающего напряжения

— Максимальные значения от 2 В до 36 В

— Прошли испытания напряжением до 30 В: без буквы «V» в маркировке

— Прошли испытания напряжением до 32 В: с буквой «V» в маркировке


  • Небольшой потребляемый ток, не зависящий от напряжения питания 0.4 мА
  • Низкий входной ток смещения: 25 нА
  • Низкий входной ток смещения нуля: 3 нА
  • Низкое входное напряжение смещения нуля: 2 мВ
  • Диапазон синфазного входного напряжения включает землю
  • Диапазон дифференциального входного напряжения равен максимуму напряжения питания
  • Низкое выходное напряжение насыщения
  • Выход совместим с ТТЛ, МОП и КМОП логикой

 

2 Применение

  • Датчики химических веществ или газов
  • Настольные ПК
  • Управление двигателями
  • Весы

 

3 Описание

 

Микросхемы данных серий состоят из двух независимых компараторов напряжения, которые могут работать от однополярного источника питания.  Работа от двуполярного источника также возможна при условии, что разница между двумя полюсами питания от 2 В до 36 В, и Vcc не менее, чем на 1,5 В более положительно, чем  входное синфазное напряжение. Потребляемый ток не зависит от напряжения питания. К выходам могут быть подключены другие выходы с открытым коллектором для получения схемы логического «И». Микросхема  LM193 может работать при температурах от  -55°C до 125°С. LM293 и LM293A  от -25°C до 85°C.  LM393 и LM393A  от 0°C до 70°C.  LM2903  от -40°C до 125°С.

 

Типы корпусов для разных серий
Серия Тип корпуса Размеры
LM193D, LM293D, LM293AD, LM393D, LM393AD, LM2903D SOIC (8) 4.90 мм x 6.00 мм
LM293DGK, LM293ADGK, LM393DGK, LM393ADGK, LM2903DGK VSSOP (8) 3.00 мм x 5.00 мм
LM293P, LM393P, LM393AP, LM2903P PDIP (8) 9.50 мм × 6.30 мм
LM393PS, LM393APS, LM2903PS SO (8) 6.20 мм x 7.90 мм
LM393PW, LM393APW, LM2903PW TSSOP (8) 6.40 мм x 3.00 мм
LM193JG GDIP (8) 10.00 мм x 7.00 мм
LM193FK CQCC (8) 9.00 мм x 9.00 мм

 

Расположение выводов

D, DGK, JG, P, PS, или PW 8-выводной SOIC, VSSOP, GDIP, PDIP, SO, или TSSOP Вид СверхуD, DGK, JG, P, PS, или PW
8-выводной SOIC, VSSOP, GDIP, PDIP, SO, или TSSOP
Вид Сверху

20-Выводной CQCC Вид сверху20-Выводной CQCC
Вид сверху

 

Назначение выводов
Номер вывода I/O Описание
Обозначение SOIC, VSSOP, GDIP, PDIP, SO, или TSSOP LCCC
1OUT 1 2 Выход Выход компаратора 1
1IN- 2 5 Вход Отрицательный вход компаратора 1
1IN+ 3 7 Вход Положительный вход компаратора 1
GND 4 10 Вход Земля
2IN+ 5 12 Вход Положительный вход компаратора 2
2IN- 6 15 Вход Отрицательный вход компаратора 2
2OUT 7 17 Выход Выход  компаратора 2
VCC 8 20 Вход Напряжение питания
NC 1 N/A

Не задействованы

 (Внутренне не подключенные выводы)

3
4
6
8
9
11
13
14
16
18
19

 

 

 

Абсолютные максимальные значения
MIN MAX UNIT
VCC Напряжение питания 36 В
VID Дифференциальное входное напряжение ±36 В
VI Входное напряжение (на любом выводе) –0.3 36 В
VO Выходное напряжение 36 В
IO Выходной ток 20 мА
Длительность короткого замыкания выхода на землю Неограниченна
TJ Рабочая температура кристалла 150 °C
Температура корпуса в течении 60 с FK корпус 260 °C
Температура припоя 1,6 мм для корпуса в течении 60 с J корпус 300 °C
Tstg Температура хранения –65 150 °C

 

 

Электрические характеристики LMx93 (VCC = 5 В)
Параметр Условия TA LM193 LM293
LM393
Ед. изм.
Мин. Тип. Макс. Мин. Тип. Макс.
VIO Входное напряжение смещения нуля VCC =  от 5 В до 30 В,
VIC = VICR(Мин.),
VO = 1.4 В
25°C 2 5 2 5 мВ
Весь диапазон 9 9
IIO Входной ток смещения нуля VO = 1.4 В 25°C 3 25 5 50 нА
Весь диапазон 100 250
IIB Входной ток смещения VO = 1.4 В 25°C –25 –100 –25 –250 нА
Весь диапазон –300 –400
VICR Диапазон входного синфазного напряжения 25°C от 0 до
VCC -1.5
от 0 до
VCC -1.5
В
Весь диапазон от 0 до
VCC -2
от 0 до
VCC -2
AVD Большой сигнал усиленного дифференциального напряжения VCC = 15 В,
VO = от 1.4 В до 11.4 В,
RL ≥ 15 кОм до VCC
25°C 50 200 50 200 В/мВ
IOH Высокий уровень выходного тока VOH = 5В VID = 1 В 25°C 0.1 0.1 50 нА
VOH = 30В VID = 1 В Весь диапазон 1 1 мкА
VOL Низкий уровень выходного напряжения IOL = 4 мА, VID = –1 В 25°C 150 400 150 400 мВ
Весь диапазон 700 700
IOL Низкий уровень выходного тока VOL = 1.5 V, VID = -1 В 25°C 6 6 мА
ICC Потребляемый ток RL = ∞ VCC = 5 В 25°C 0.8 1 0.8 1 мА
VCC =30В Весь диапазон 2.5 2.5

 

Электрические характеристики LMx93A (VCC = 5 В)
Параметр Условия TA LM293A
LM393A
Ед. изм.
Мин. Тип. Макс.
VIO Входное напряжение смещения нуля VCC = от 5 В до 30 В, VO = 1.4 В
VIC = VICR(Мин.)
25°C 1 2 мВ
Весь диапазон 4
IIO Входной ток смещения нуля VO = 1.4 В 25°C 5 50 нА
Весь диапазон 150
IIB Входной ток смещения VO = 1.4 В 25°C –25 –250 нА
Весь диапазон –400
VICR Диапазон входного синфазного напряжения 25°C от 0 до VCC -1.5 V
Весь диапазон от 0 до
VCC  – 2
AVD Большой сигнал усиленного дифференциального напряжения VCC = 15 В, VO = 1.4 В до 11.4 В,
RL  ≥ 15 кОм до VCC
25°C 50 200 В/мВ
IOH Высокий уровень выходного тока VOH = 5 В, VID = 1 В 25°C 0.1 50 нА
VOH = 30 В, VID = 1 В Весь диапазон 1 мкА
VOL Низкий уровень выходного напряжения IOL = 4 мА, VID = –1 В 25°C 150 400 мВ
Весь диапазон 700
IOL Низкий уровень выходного тока VOL = 1.5 В, VID = –1 В, 25°C 6 мА
ICC Потребляемый ток
(четыре компаратора)
RL = ∞ VCC = 5 В 25°C 0.8 1 мА
VCC = 30 В Весь диапазон 2.5
Электрические характеристики LM2903 и LM2903A (VCC = 5 В)
Параметр Условия TA LM2903 LM2903A Ед. изм.
Мин. Тип. Макс. Мин. Тип. Макс.
VIO Входное напряжение смещения нуля VCC = 5 В до Макс.,
VO = 1.4 В,
VIC = VICR(Мин.),
25°C 2 7 1 2 мВ
Весь диапазон 15 4
IIO Входной ток смещения нуля VO = 1.4 В 25°C 5 50 5 50 нА
Весь диапазон 200 200
IIB Входной ток смещения VO = 1.4 В 25°C –25 –250 –25 –250 нА
Весь диапазон –500 –500
VICR Диапазон входного синфазного напряжения 25°C от 0 до
VCC -1.5
от 0 до
VCC -1.5
V
Весь диапазон от 0 до
VCC  -2
от 0 до
VCC  -2
AVD Большой сигнал усиленного дифференциального напряжения VCC = 15 В, VO = от 1.4 В до 11.4 В,
RL  ≥ 15 кОм до VCC
25°C 25 100 25 100 В/мВ
IOH Высокий уровень выходного тока VOH = 5 В, VID = 1 В 25°C 0.1 50 0.1 50 нА
VOH = VCC Макс. VID = 1 В Весь диапазон 1 1 мкА
VOL Низкий уровень выходного напряжения IOL = 4 мА, VID = –1 В, 25°C 150 400 150 400 мВ
Весь диапазон 700 700
IOL Низкий уровень выходного тока VOL = 1.5 В, VID = -1 В 25°C 6 6 мА
ICC Потребляемый ток RL = ∞ VCC = 5 В 25°C 0.8 1 0.8 1 мА
VCC = Макс. Весь диапазон 2.5 2.5
Схема включения для сравнения входного напряжения с опорным (Vref) и схема для сравнения двух напряжений Рис.1 Схема включения для сравнения входного напряжения с опорным (Vref) и схема для сравнения двух напряжений

 

Примерные значения для схемы на Рис. 1
Параметры Примерные значения
Диапазон входного напряжения от 0 В до Vsup-1.5 В
Напряжение питания от 2 В до 36 В
Напряжение питания логической схемы от 2 В to 36 В
Выходной ток (RPULLUP) от 1 мкА до 20 мА
Входная разница напряжений 100 мВ
Опорное напряжение 2.5 В
Нагрузочная емкость  (CL) 15 пФ

 

Купить LM393 по самой низкой цене вы можете здесь.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Lm393n схема включения как работает

Для управления электронными схемами применяются различные устройства, которые помогают настраивать и разветвлять сигналы. Для сравнения двух разных импульсов часто используется компаратор с однополярным питанием.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:

Lm393n схема включения как работаетФото – УГО компаратора

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.

Lm393n схема включения как работаетФото – Компаратор

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.

Lm393n схема включения как работаетФото – схема компаратора

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.

Lm393n схема включения как работаетФото – простой компаратор

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото – аналоговый компаратор

Видео: компараторы

Принцип работы

Для того, чтобы продемонстрировать, как работает быстродействующий компаратор с гистерезисом, нужно взять схему с двумя выходами.

Lm393n схема включения как работаетФото – схема работы компаратора

Схема включения, по которой можно понять принцип работы компаратора, показана выше. Используя аналоговый сигнал во + входе, именуемым «неинвертируемым», и выходе, который называется под названием «инвертируемый», устройство использует два аналогичных разнополярных сигнала. При этом если аналоговый вход больше, чем аналоговый выход, то выход будет «1», и это включит открытый коллектор транзистора Q8 на эквивалентной схеме LM339, которую нужно включить. Но, если вход находится на отрицательном уровне, то сигнал будет равняться «0», из-за чего, коллектор будет находиться в закрытом виде.

Практически всегда двухпороговый или фазовый компаратор (например, на транзисторах, без усилителя) воздействует на входы в логических цепях, соответственно, работает по уровню определенной сети питания. Это своеобразный элемент перехода между аналоговыми и цифровыми сигналами. Такой принцип действия позволяет не уточнять определенность или неопределенность выходов сигналов, т. к. компаратор всегда имеет некий захват петли гистерезиса (независимо от её уровня) или окончательный коэффициент усиления.

Назначение

Зачем нужен компаратор и как его использовать без усилителя? В большинстве случаев, этот прибор применяется в несложных компьютерных схемах, где нужно сравнивать сигналы входящего напряжения. Это может быть зарядное устройство для ноутбука или телефона, весы (определитель массы), датчик сетевого напряжения AVR, таймер (компоратор типа lm 358, микроконтроллер и т. д. Также его применяют различные интегральные микросхемы для контроля входных импульсов, обеспечивая связь между источником сигнала и его центром назначения.

Lm393n схема включения как работаетФото – компараторы для компьютера

Наиболее популярным примером является компаратор триггер (регулятор) Шиммера. Он работает в режиме многоканальности, соответственно, может сравнивать большое количество сигналов. В частности, данный триггер применяется для того, чтобы восстановить цифровой сигнал, который искажает связь в зависимости от уровня напряжения и расстояния источника питания.

Это аналог стандартного компаратора, просто с более расширенным функционалом, который обеспечивает измерение нескольких входящих сигналов.

Lm393n схема включения как работаетФото – ОУ компаратор

Также есть компаратор шероховатости. Это устройство, которое помогает визуально определить состояние поверхности, которая уже подвергалась обработке. Применение этого приспособления обосновано необходимостью определять допуски обработанных ранее поверхностей.

Программирование и компаратор

Компоратор используется не только как часть электрической схемы ШИМ и т. д., его часто используют для создания отдельных программ или их компонентов. Например, устройство часто используется для создания java-коллекций.

  1. Чтобы работать, Вам понадобится специальная программа Maven. Для начала Вам нужно создать проект, для полноценной работы необходимо подключение к интернету. Создаете новый проект, в структуре выберете два компонента: comparator и pojo. Наличие проверяется при помощи утилиты JUnit 4.11;
  2. Установите pom.xml и создайте новый файл. Прерывание процесса недопустимо, поэтому очень важно на каждом этапе сохранять. После осуществляется создание и настройка POJO, где указываются нужные настройки. Параметры зависят от требований к конкретной библиотеке. Это могут быть даты рождения, общая информация по проживанию и т. д.;
  3. И только после создается компаратор. Это класс, который используется для поверки данных и их распределения по нужным папкам. Использование данного класса необходимо, если нужно отсортировать определенную информацию по заданным параметрам (цвета, размеры, даты). Благодаря этому обеспечивается защита данных и их классификация по определенному принципу.

Купить готовый компаратор можно в любом магазине радиотехнических приборов и электротехники. Цена прибора варьируется в зависимости от его назначения и количества каналов.

50 шт. LM393 DIP Cдвоенный компаратор. US $2.00

Lm393n схема включения как работает

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Lm393n схема включения как работает

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Lm393n схема включения как работает

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Схема эквивалента компаратора напряжения с однополярным источником питания

Lm393n схема включения как работает

Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.

Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

Lm393n схема включения как работает

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Описание работы компаратора

Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы. В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания. В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.

Lm393n схема включения как работает

Сигнал на выходе:

  1. Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
  2. Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Lm393n схема включения как работает

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Lm393n схема включения как работает

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Автор: Сергей · Опубликовано 27.01.2017 · Обновлено 10.07.2019

Lm393n схема включения как работает

Модуль освещенности на LM393, используется для измерения интенсивности света в различных устройствах, таких как, автоматизация света (включении света ночью), роботах (определения дня или ночи) и приборов контролирующих уровень освещенности. Измерения осуществляется с помощью светочувствительного элемента (фоторезистора), который меняет сопротивление в зависимости от освещенности.

Технические параметры

► Напряжение питания: 3.3 В

5.5 В
► Потребляемый ток: 10 мА
► Цифрового выход: TTL (лог 1 или лог 0)
► Аналогового выход: 0 В … Vcc
► Диаметр монтажного отверстия: 2.5 мм
► Выходной ток: 15 мА
► Габариты: 42мм х 15мм х 8мм

Общие сведения

Существует два модуля, визуально отличие только в количестве выводов (3 pin и 4 pin), дополнительный вывод добавлен, для снятие прямых показаний с фоторезистора (аналоговый выход), в статье пойдет речь о четырех контактом варианте модуля. В этих двух модулей, измерение осуществляется с помощью фоторезистора, который изменяет напряжение в цепи в зависимости от количества света, попадающего на него. Чтобы представить, как свет будет влиять на фоторезистор, приведу краткую таблицу.

Lm393n схема включения как работает

Модуль освещенности с четырьмя выводами содержит два выходных контакты, аналоговый и цифровой и два контакта для подключения питания. Для считывания аналогово сигнала предусмотрен отдельный вывод «AO», с которого можно считать показания напряжения с 0 В … 3.3 В или 5 В в зависимости от используемого источника питания. Цифровой вывод DO, устанавливается в лог «0» или лог «1», в зависимости от яркости, чувствительность выхода, можно регулировать с помощью поворотного потенциометра. Выходной ток цифрового выхода, способен выдать более 15 мА, что очень упрощает использования модуля и дает возможность использовать его минуя контроллер Arduino и подключая его напрямую ко входу однокональному реле или одному из входов двухконального реле. Принципиальную схему модуля освещенности на LM393 с 3 pin и 4 pin, показана ниже.

Принципиальная схема модуля освещенности на LM393 с 4 pin

Lm393n схема включения как работает

Принципиальная схема модуля освещенности на LM393 с 3 pin

Lm393n схема включения как работает

Теперь, как же работает схема, фоторезистор показан Foto (IN). Основная микросхема модулей, это компаратор LM393 (U1), который производит сравнение уровней напряжений на входах INA- и INA+. Чувствительность порога срабатывания задается с помощью потенциометром R2 и в результате сравнений на выходе D0 микросхемы U1, формируется лог «0» или лог «2», который поступает на контакт D0 разъема J1.

Lm393n схема включения как работает

Назначение J1 (в исполнении 4 pin)
► VCC: «+» питание модуля
► GND: «-» питание модуля
► D0: цифровой выход
► A0: аналоговый выход

Назначение J1 (в исполнении 3 pin)
► VCC: «+» питание модуля
► GND: «-» питание модуля
► D0: цифровой выход

Подключение модуля освещенности к Arduino

Необходимые детали:
► Arduino UNO R3 x 1 шт.
► Модуль освещенности, LM393, 4 pin x 1 шт.
► Провод DuPont, 2,54 мм, 20 см, F-M (Female — Male) x 1 шт.
► Кабель USB 2.0 A-B x 1 шт.

Подключение:
В данном примере буду использовать модуль освещенности, LM393, 4 pin и Arduino UNO R3, все данные будут передаваться в «Мониторинг порта». Схема не сложная, необходимо всего четыре провода, сначала подключаем шину A0 в порт A0 (Arduino UNO) и D0 в порт А1 (Arduino UNO), осталось подключить питание GND к GND и VCC к 5V (можно записать и от 3.3В), схема собрана, теперь надо подготовить программную часть.

Lm393n схема включения как работает

Запускаем среду разработки и загружаем данный скетч, затем открываем мониторинг порта.

Скачать скетч

В мониторинг порта, можно увидеть все изменения джойстика и нажатия кнопки.Lm393n схема включения как работает

Lm393n схема включения как работает

Купить на Aliexpress
Контроллер Arduino UNO R3
Комплект проводов DuPont, 2,54 мм, 20 см
Модуль освещенности, LM393, 3 pin
Модуль освещенности, LM393, 4 pin

Купить в Самаре и области
Купить контроллер Arduino UNO R3
Купить провода DuPont, 2,54 мм, 20 см
Купить модуль освещенности, LM393, 3 pin
Купить модуль освещенности, LM393, 4 pin

Lm393n схема включения как работает, микросхема к554са2

Прошло почти два года с тех пор, как я пытался приручить операционный усилитель УД708 для сравнения двух сигналов. Знаний тогда было мало, поэтому времени уходило много, а главное — еще и безрезультатно. Но в итоге для своей задачи я смог «договориться» с компаратором LM393N. А на днях перебирал поделку, в которой впервые использовал эту микросхему, и решил вспомнить, как работает компаратор. Заодно и другим рассказать.
Компаратор — это устройство, сравнивающее два аналоговых сигнала. В самом простом случае — операционный усилитель без обратных связей. На входы ему подаются два напряжения — эталонное, оно же опорное (известно заранее) и измеряемое. На выходе возможны два состояния:

«1» — когда напряжение на прямом входе больше, чем на инвертирующем;
«0» — когда напряжение на прямом входе меньше, чем на инвертирующем.

Некоторые компараторы самостоятельно формируют уровни логических нуля и единицы (например, «ноль» — это ноль, «единица» — плюс пять вольт), но LM393 — с открытым коллектором. Ей для создания выходного напряжения нужен внешний резистор, подключающийся либо к «плюсу» питания, либо к другому «плюсу» (в разумных пределах, конечно).

Первые две схемы — каноничное включение нагрузки под открытый коллектор. Я подключал внешний резистор к питающему «плюсу».

Включение 4

Измеряемое напряжение подается на инвертирующий вход, опорное — на прямой.

Пока напряжение на инвертирующем входе меньше, чем на прямом, компаратор выдает «ноль», и светодиод не горит. Иначе — «единица».

Вообще, лучше, конечно, пользоваться первыми двумя общепринятыми схемами, чтобы не было путаницы.

Еще один важный момент — подключение нагрузки (светодиода) к другому напряжению (как мог, изобразил 24 вольта). Справедливо для любого из ранее изображенных включений.

О нагрузке. В даташите о максимальном токе коллектора сказано, что больше 6-20 мА микросхема не выдаст. То есть включить один светодиод — не проблема, а вот что побольше…

Кусок светодиодной ленты, подключенный прямо к выходу компаратора (по третьей или четвертой схеме, без резистора R3) светил слабо (1 мА). Пришлось поддать напряжения до 12 вольт, и тогда ток коллектора вырос до 14 мА. При подключении ленты напрямую к блоку питания — 32 мА. Таким образом, как ни крути, а максимум, что можно получить конкретно от этой LM-ки — 14 мА.

Вывод — что-то прожорливое есть смысл пускать через транзистор, загнанный в ключевой режим. При этом каскаду с общим эмиттером, инвертирующему сигнал, как нельзя лучше подойдет третья или четвертая схемы включения. Ведь если сигнал инвертировать дважды — получится опять исходный сигнал.
Например, на прямом входе компаратора «единица» (по привычной логике — на прямом входе напряжение больше, чем на инвертирующем). Третья схема сделает из нее «ноль» на выходе. А каскад с общим эмиттером, «перевернув» этот «ноль», опять даст «единицу».

Стрелка цепляется к выходу компаратора (R1 — это R3 из предыдущей схемы). R2, возможно, придется подобрать: если он будет слишком маленьким, то транзистор может сгореть, а если слишком большим — не откроется (можно попробовать 4,7 кОм). При подаче «единицы» в базе транзистора должно быть примерно 0,7 В (для кремния). К R3 тоже есть вопросы, но слишком малым и он не должен быть.

Моделирование. Когда на входе «ноль» (а «ноль» третьей и четвертой схемы — это в нормальном включении «единица»), то на выходе — «единица», светодиод работает. С чего начали, к тому и пришли — «единица» опять стала сама собой.

Теперь, когда на входе «единица», то на выходе «ноль». Вот она, знаменитая инверсия каскада с общим эмиттером!

А если включать нагрузку в коллектор транзистора, то «единицы» и «нули» по входу и выходу будут совпадать.
В общем, простор для творчества — колоссальный.

Реклама

Микросхема LM393 имеет в своем корпусе два независимых компаратора напряжения. Компаратор LM393 может работать, как от однополярного источника питания в широком диапазоне напряжений, так и от двухполярного источника. При использовании двухполярного — разница между потенциалами должна составлять от 2 В до 36 В.

Ток потребления компаратора не зависит от напряжения питания. Необходимо обратить внимание, что данный компаратор имеет выход с открытым коллектором.

Ключевая особенность LM393

  • Широкий диапазон напряжения питания: 2…36 В или ±1…±18 В
  • Очень низкий ток потребления (0,45 мА)
  • Низкий входной ток смещения: 20 нА
  • Низкий входной ток смещения: ± 3 нА
  • Низкое входное напряжение смещения: ± 1 мВ тип
  • Низкое выходное напряжение насыщения: 80 мВ
  • TTL, DTL, ECL, MOS, CMOS совместимые выходы
  • Компаратор LM393 доступен в корпусе: DFN8 2х2, MiniSO8, TSSOP8 и SO8

Принцип работы LM393

Чтобы понять как же работает данный компаратор, рассмотрим простую схему сумеречного автомата.

Глядя на схему мы видим, что оба входа компаратора подключены к делителям напряжения. Первый делитель напряжения, подключенный к инвертирующему входу (2), состоит из постоянного резистора и фоторезистора.

Как известно сопротивление неосвещенного фоторезистора имеет очень большое сопротивление (более 1МОм), и малое при освещении. Поэтому в ночное время суток, согласно логике работы делителя напряжения, напряжение на входе (2) компаратора будет выше, чем в дневное время суток.

Чтобы включать и выключать свет (в нашем случае светодиод), в зависимости от степени освещенности фоторезистора, нам необходимо установить порог переключения. Для этого служит неинвертирующий вход (3) на который необходимо подать опорное (неизменяемое) напряжение. Это опорное напряжение мы возьмем с переменного резистора R3, который выполняет роль делителя напряжения.

Теперь компаратор будет сравнивать два уровня напряжения (на выводах 2 и 3). Если напряжение на входе 2 будет больше чем на входе 3, то светодиод загорится. Как только напряжение на входе 2 опустится (при освещении фоторезистора) ниже уровня напряжения на входе 3, светодиод погаснет.

(595,7 Kb, скачано: 5 792)

Компаратор К554СА2

Компараторы являются специализированными ОУ с дифференциальным входом и одиночным или парафазным цифровым выходом. Входной каскад компаратора построен аналогично схемам ОУ и работает в линейном режиме. На выходе компаратора формируются сигналы высокого логического уровня, если разность входных сигналов меньше напряжения срабатывания компаратора, или низкого логического уровня, если разность входных сигналов превышает напряжение срабатывания компаратора. На один вход компаратора подается исследуемый сигнал, на другой — опорный потенциал.

Основными параметрами компараторов являются: чувствительность Uвхмин (точность, с которой компаратор может различать входной и опорный сигналы), быстродействие (скорость отклика, определяемая задержкой срабатывания и временем нарастания сигнала), нагрузочная способность (способность компаратора управлять определенным числом входов цифровых микросхем).

Компаратор К554СА2 (см. рисунок) имеет два дифференциальных усилительных каскада, выходной эмиттерный повторитель, стабилитронные схемы сдвига уровня и цепь ограничения амплитуды выходного сигнала. Дифференциальный входной каскад (VT1 и VT4) имеет обычное для интегральных ОУ малое напряжение смещения нуля. На эммитеры транзисторов VT1 и VT4 напряжение питания подается от генератора стабильного тока VT5, благодаря чему коллекторные токи транзисторов первого каскада почти не зависят входного синфазного сигнала. Второй дифференциальный каскад (VT3 и VT6) имеет балансную схему подачи смещения. В сбалансированном состоянии напряжение одиночного выхода этого каскада колебаниях положительного напряжения питания не меняется. Тем самым фиксируется потенциал базы транзистора VT2 (при включении положительного напряжения питания коллекторные токи транзисторов VT6 и VT3 также увеличиваются, оставляя напряжение коллекторного транзистора VT3 постоянным).

Для увеличения нагрузочной способности выхода по току транзистор VT6 снабжен эмиттерным повторителем VT8. Интегральный стабилитрон VD1, включенный в эмиттерные цепи транзисторов второго каскада, имеет опорное напряжение +6,2 В, что фиксирует потенциалы без транзисторов VT3 и VT6 на уровне примерно +6,9В. Следовательно, допустимый сигнал входов компаратора может приближаться к 7 В. Стабилитрон VD2, включенный в цепь выходного эмиттерного повторителя, сдвигает уровень выходного сигнала «вниз» на 6,2 В, чтобы сделать его совместимым с входными сигналами для цифровых микросхем ТТЛ — типа. Транзистор VT9 изолирует выходную цепь от схемы смещения генератора тока входного каскада VT5 с компенсирующим диодом (VT10 в диодном включении). транзистор VT7 (в диодном включении) ограничивает размах выходного сигнала в положительной области: при уровнях сигнала на выходе, больших +4 В, транзистор VT7 открывается и шунтирует дифференциальный выход второго каскада. благодаря ограничению амплитуды значительно увеличивается быстродействие компаратора .

Рисунок 4 — Принципиальная электрическая схема К554СА2, зависимости времени нарастания выходного напряжение соответственно от входного напряжения и емкости нагрузки

Рисунок 5 — Условно-графическое изображение К554СА2

Таблица 1 — Электрические параметры К554СА2

Номинальное напряжение питания

12 В +10%

-6 В +10%

Напряжение смещения нуля

не более 7,5 мВ

Выходное напряжение низкого уровня

не более 0,3 В

Выходное напряжение высокого уровня

2,5…4 В

Ток потребления

от источника питания Ucc1

от источника питания Ucc2

не более 9 мА

не более 8 мА

Средний входной ток

не более 75 мкА

Разность входных токов

не более 10 мкА

Время задержки выключения

не более 120 нс

Коэффициент усиления напряжения

не менее 750

Таблица 2 — Предельно допустимые режимы эксплуатации К554СА2

Напряжение питания

10,8…13,2 В

-5,4…-6,6 В

Значение статического потенциала

200 В

Максимальное входное дифференциальное напряжение

4,5 В

Минимальное сопротивление нагрузки

1 кОм

Температура окружающей среды

-45…+85 °C

Расчет компаратора с гистерезисом

Регуляторы закреплены на металлической панели все три штуки. Интересно, что когда регуляторы еще не были закреплены на металлической панели, фона было в половину меньше. Конечно, я лучше поставлю пластиковую переднюю панель. Но там фон все-равно был, такого плана — на минимальной громкости он хорошо слышен, как добавляешь звука — как бы фона и нет. Регулятор ВЧ тоже интересно себя ведет — в процессе регулировки есть два — три положения, когда в динамиках возникает эффект, как будто в приемнике ловишь радиоволну. Немного покрутил — все нормально. Когда регуляторы не были закреплены на металлической панели, такого эффекта не наблюдалось Всего у меня подключено два усилительных блока к ТБ. Есть еще третий блок, на него идет выход с микрофонного предусилителя — ревербератора. Так там фона нет вообще. То есть я делаю вывод, что как бы не от усилителя фон. Плата называется ТБ от Симы. Вообще, хочу сказать, что я доволен платой. Это виной всему мои скудные познания в радиотехнике. Собрана в точности. Контакт GND я никуда не подключал, просто не знаю куда. Первое, что приходит в голову — завести его на минус. Буду благодарен за любой совет.

Для управления электронными схемами применяются различные устройства, которые помогают настраивать и разветвлять сигналы. Для сравнения двух разных импульсов часто используется компаратор с однополярным питанием.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:

Фото – УГО компаратора

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.

Фото – Компаратор

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.

Фото – схема компаратора

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.

Фото – простой компаратор

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото – аналоговый компаратор

Видео: компараторы

Принцип работы

Для того, чтобы продемонстрировать, как работает быстродействующий компаратор с гистерезисом, нужно взять схему с двумя выходами.

Фото – схема работы компаратора

Схема включения, по которой можно понять принцип работы компаратора, показана выше. Используя аналоговый сигнал во + входе, именуемым «неинвертируемым», и выходе, который называется под названием «инвертируемый», устройство использует два аналогичных разнополярных сигнала. При этом если аналоговый вход больше, чем аналоговый выход, то выход будет «1», и это включит открытый коллектор транзистора Q8 на эквивалентной схеме LM339, которую нужно включить. Но, если вход находится на отрицательном уровне, то сигнал будет равняться «0», из-за чего, коллектор будет находиться в закрытом виде.

Практически всегда двухпороговый или фазовый компаратор (например, на транзисторах, без усилителя) воздействует на входы в логических цепях, соответственно, работает по уровню определенной сети питания. Это своеобразный элемент перехода между аналоговыми и цифровыми сигналами. Такой принцип действия позволяет не уточнять определенность или неопределенность выходов сигналов, т. к. компаратор всегда имеет некий захват петли гистерезиса (независимо от её уровня) или окончательный коэффициент усиления.

Назначение

Зачем нужен компаратор и как его использовать без усилителя? В большинстве случаев, этот прибор применяется в несложных компьютерных схемах, где нужно сравнивать сигналы входящего напряжения. Это может быть зарядное устройство для ноутбука или телефона, весы (определитель массы), датчик сетевого напряжения AVR, таймер (компоратор типа lm 358, микроконтроллер и т. д. Также его применяют различные интегральные микросхемы для контроля входных импульсов, обеспечивая связь между источником сигнала и его центром назначения.

Фото – компараторы для компьютера

Наиболее популярным примером является компаратор триггер (регулятор) Шиммера. Он работает в режиме многоканальности, соответственно, может сравнивать большое количество сигналов. В частности, данный триггер применяется для того, чтобы восстановить цифровой сигнал, который искажает связь в зависимости от уровня напряжения и расстояния источника питания.

Это аналог стандартного компаратора, просто с более расширенным функционалом, который обеспечивает измерение нескольких входящих сигналов.

Фото – ОУ компаратор

Также есть компаратор шероховатости. Это устройство, которое помогает визуально определить состояние поверхности, которая уже подвергалась обработке. Применение этого приспособления обосновано необходимостью определять допуски обработанных ранее поверхностей.

Программирование и компаратор

Компоратор используется не только как часть электрической схемы ШИМ и т. д., его часто используют для создания отдельных программ или их компонентов. Например, устройство часто используется для создания java-коллекций.

  1. Чтобы работать, Вам понадобится специальная программа Maven. Для начала Вам нужно создать проект, для полноценной работы необходимо подключение к интернету. Создаете новый проект, в структуре выберете два компонента: comparator и pojo. Наличие проверяется при помощи утилиты JUnit 4.11;
  2. Установите pom.xml и создайте новый файл. Прерывание процесса недопустимо, поэтому очень важно на каждом этапе сохранять. После осуществляется создание и настройка POJO, где указываются нужные настройки. Параметры зависят от требований к конкретной библиотеке. Это могут быть даты рождения, общая информация по проживанию и т. д.;
  3. И только после создается компаратор. Это класс, который используется для поверки данных и их распределения по нужным папкам. Использование данного класса необходимо, если нужно отсортировать определенную информацию по заданным параметрам (цвета, размеры, даты). Благодаря этому обеспечивается защита данных и их классификация по определенному принципу.

Купить готовый компаратор можно в любом магазине радиотехнических приборов и электротехники. Цена прибора варьируется в зависимости от его назначения и количества каналов.

Opel Kadett 1.4 papamobilE ›
Бортжурнал ›
Регулятор напряжения своими руками

Когда-то давно накрылся мокрым тазом и медным полотенцем мой штатный регулятор. После того я поставил самодельный по принципу усилителя. Схема была неплохая, но грелась сильно. Через год она благополучно вышла из строя. Поэтому пришлось сделать новый регулятор по принципу штатных. Т.е. выходной транзистор работает в ключевом режиме: когда напряжение превышает заданное, регулятор полностью отключает обмотку возбуждения. При снижении напряжения — снова включает. Включение/отключение надо производить резко, иначе перерегулирования не избежать. Свой регулятор я собрал на компараторе. Схема элементарная:

Схема принципиальная
На один вход компаратора подается эталонное напряжение, на другой — измеренное с делителя R1-R2-R3.
Резистором R2 можно установить требуемое напряжение в диапазоне от 12,5 до 15,5 В
Но!
При первой установке начало качать напряжение, фары и все лампочки моргали с низкой частотой. Выкусил конденсатор С1. Гистерезис уменьшился, но лампочки так же моргают. Установка заводского регулятора не меняет картины. Раскачка напряжения примерно 1В.
На одном форуме нашёл, что причиной может быть плохой контакт массы регулятора. Люди написали, что это бред. Кому интересно, докажу обратное. Резистор R9 у меня в схеме — это тот самый «плохой контакт».
При подаче напряжения на схему R9 подключён последовательно с делителем, но его сопротивление ничтожно мало и на «объективность» измерений не влияет. Регулятор видит напряжение 12В (а задано 14,2) и … открывает выходной транзистор. По обмотке возбуждения начинает идти ток порядка 3-4 А. Этот же ток течет и через «плохую» массу регулятора (R9). По закону Ома на этом резисторе появляется падение напряжения около 1В. Теперь регулятор видит напряжение 12-1=11В! Поскольку генератор уже возбужден, напряжение повышается. Пока регулятор не «увидит» 14,2В, он не отключит возбуждение. Когда он всё-таки увидит заданные 14,2В, это будет означать, что в бортовой сети уже 15,2В (14,2+1на плохом контакте, которое регулятор не видит)!
Теперь обмотка возбуждения отключается, ток через R9 становится ничтожно мал, следовательно — падение на нем исчезает. Регулятор снова видит правильно! А правильно — это 15,2В! Вот он и ждет, когда напряжение упадет до 14,199999В, чтобы снова подключить возбуждение.
Плохой контакт я устранил, напряжение стало, как вкопанное!
Размеры регулятора большие, потому что сразу я использовал обычный советский биполярный транзистор. Он грелся и не вытягивал нагрузки. Заменил на полевой с изолированным затвором IRF3205. Штука бомбовая! Сопротивление в открытом состоянии — 0,0008Ом!
Корпус уже решил не переделывать. При оборотах 1200 и выше держит напряжение при ЛЮБОЙ нагрузке!
А главное, что на лето можно убавить напряжение, а на зиму — добавить. А самое-пресамое преимущество — это «цена вопроса»)

LM393N / LM393D - ОУ и Компараторы - МИКРОСХЕМЫ - Электронные компоненты (каталог)

Корпус: DIP-8 (LM393N)

 

Корпус: SO-8 (LM393D)

 

LM393N/LM393D - двухканальный компаратор для работы в бытовом диапазоне температур (0..+70°С). Выход - открытый коллектор.

Микросхема компараторов LM393 по функциональному назначению и расположению выводов аналогична таким микросхемам как LM193, LM293, LM2903, но отличается от них температурным диапазоном работы и незначительно другими параметрами.

Аналоги: КР1401СА3 / КФ1401СА3.

 

Микросхема LM393 также может поставляться в зависимости от производителя с маркировкой DV393, UTC393, IL393N и др.

Предельные режимы LM393N/LM393D:

Напряжение питания

+36V

или

±18V

Входное напряжение

-0,3..+36V

Дифференциальное

входное напряжение

36V

Выходной ток 20mA

Диапазон температур

0..+70°С


Замыкание выхода на +Vcc может вывести микросхему LM393 из строя.

Основные характеристики LM393N/LM393D:

Параметр

Мин.

Тип.

Макс.

Напряжение смещения

 

±1mV

±5mV

Синфазный входной ток 25nA 250nA

Дифференциальный входной ток

 

±5nA

±50nA

Выходной втекающий ток

6mA

16mA

 

Коэффициент усиления по напряжению

50V/mV

200V/mV

 

Напряжение насыщения

 

 

400mV

Ток потребления

 

1,1mA

2,0mA

Время отклика

 

1,3µS

 

Время отклика на большом сигнале 300nS

Тройной индикатор АКБ 12В на LM393/358 – Поделки для авто

Очень важно контролировать разряд любого аккумулятора, ведь у каждого из них есть некое пороговое напряжение, ниже которого его нельзя разряжать, иначе аккумулятор потеряет значительную часть свой ёмкости, быстрее деградирует и не сможет выдавать заявленный ток, придётся покупать новый, а он не дешевый.


В этой статье я расскажу и покажу как сделать очень простой индикатор напряжение для кислотно-свинцовых аккумуляторов 12V, широко использующихся в автомобилях, а также скутерах, мотоциклах и прочем транспорте. Если вы поймете принцип работы схемы-индикатора и назначение каждой детали, то сможете подстроить её практически для любого вида перезаряжаемых батарей, изменяя номиналы определенных электронных компонентов.

Принципиальная схему с указанными номиналами может давать вам примерную информацию о значении напряжения на выводах батареи тремя светодиодами. Цвет светодиода, в принципе можно выбирать любой понравившейся, но рекомендую использовать именно такие, как у меня, они дают четкое представление о положении батареи благодаря ассоциациям.

Итак, когда горит зеленый, то напряжение АКБ в норме (от 11,6 до 13 Вольт), если же светит белый – это значит U=13 и более, а когда же яркий красный работает, то необходимо срочно отключать нагрузку и ставить аккумулятор на подзарядку током 0,1C, напряжение 11,5 Вольт и ниже, АКБ разрядился более чем на 80 процентов. Напомню, что эти значения примерные и у вас будут немного отличаться из-за разброса характеристик используемыъ компонентов.

Ток потребление такого светодиодного оповещателя небольшой, до 15 mA. Кого это напрягает – не беда, в разрыв ставим тактовую кнопочку и радуемся. С этого момента проверка батареи ведется нажатием кнопки и анализом цвета свечения.

Защищаем плату от воды и крепим на аккумулятор, теперь очень удобно – примитивный вольтметр всегда с источником тока, в любую секунду можно протестировать его.

платка

Печатная плата сделана миниатюрная, всего 2,2 сантиметров. В моем случае используется микросхема lm358 в DIP-8 корпусе. Резисторы желательно брать с точностью 1% (прецизионные), кроме токоогрничительных. СветxXодиоды используются практически любые (3mm, 5mm) с током 20 mA.

 

Проверка производиться с помощью лабораторного блока питания на линейном стабилизаторе LM317, как видно из фото срабатывание четкое, могут светиться два светодиода, правильным будет последний. Для более точной настройки я крайне рекомендую использовать подстрочные резисторы, как на плате номер два, с помощью них вы очень точно отрегулируете те напряжение, при которых будут загораться светодиоды.

платка

Разберем работу схемы светодиодного индикатора уровня напряжения АКБ. Самой главной деталью является конечно же микросхема LM393 или LM358 (аналог КР1401СА3 / КФ1401СА3), в середине её есть два компаратора (треугольники).

Как видно из рисунка ниже всего восемь ножек, восьмая и четвертая питание, а остальные – это входы и выходы компараторов. Возьмем сначала один для объяснение его работы, три вывода, два входа (прямой (неинвертирующий) “+” и инвертирующий “–“) и один выход. На неинвертирующий (+) подается опорное напряжение (то, с котором будет сравнено напряжение, подаваемое на инвертирующий (-) вход).

Если U на прямом больше, чем на инвертирующем входе, то на выходе имеем минус питания, а если же наоборот (на инвертирующем большее значение напряжения, чем на прямом) на выходе плюс питания.

платка

Стабилитрон включается в цепь наоборот (то есть анод к минусу, а катод к плюсу), у него есть так называемый рабочий ток, при котором он и будет хорошо стабилизировать, посмотрите на график ниже и всё поймете.

523051_html_11eb5db3

Этот ток разный для разных по мощности и напряжении стабилитронов, в документации стабилитрона указывается минимальный (Iz) и максимальный ток (Izrm) стабилизации. Выбирайте нужный в этих промежутках, нам хватит и минимального – это значение тока достигается благодаря резистору.

А вот и простенькие расчеты: полное U=10 Вольт, стабилитрон у нас на 5,6 Вольт, значится 10-5,6=4,4 Вольт. По документации (даташиту) min Iст=5 mA. Считаем R=4,4 V / 0,005 A = 880 Ом. Значение сопротивления резистора немного могут отклоняться, как у меня, ничего страшного, главное чтобы ток был не менее Iz.

задинийлук

Тройной делитель напряжение состоящий из резисторов 100 кОм, 10 кОм и 82 кОм. На каждом из этих пассивных компонентов “осаживается” определенной напряжение. Оно у нас подается на инвертирующий входа.

В зависимости от степени разряженности/заряженности АКБ на них падает разное напряжение. Схема, построенная таким образом, что стабилитрон ZD1 5V6 подает на прямые входа собственно 5,6 Вольт (опорное U, то с чем будет сравнено напряжение на непрямых входах). И если, например, аккумулятор разряжен сильно, то на непрямой вход первого компаратора подается меньшее напряжение, чем на прямой, а на вход второго большее.

Таким образом первый дает минус на выходе, а второй плюс – светит только красный. Зеленый светиться тогда, когда компаратор I выдает плюс, а II минус. Белый, когда оба дают на выходе плюс, из-за этого могут светиться сразу два последних светоизлучающих диода.

Чуть ниже смотрите фото готового индикатора напряжения.ран

лучок

гаврТрисветика

И ещё хочу отметить один момент,если у вас автомобиль Опель, и вы хотите что-либо с ним сделать, например тюнинг или просто подремонтировать, то есть отличная компания, которая как раз этим и занимается.

Автор;  Егор

Похожие статьи:

USB зарядное устройство на компараторе LM393 - ИСТОЧНИКИ ПИТАНИЯ - radio-bes

Я всегда жаловался на зарядные устройства, когда мне перед уходом нужно было что-то быстро зарядить. Этот проект упростил задачу, так как само устройство питается от USB-порта ноутбука, и способно зарядить пару вышеупомянутых батареек.
Любой USB-порт может отдать 500мА при 5В. Но USB-устройства стандартно потребляют не более 100мА, поскольку порт имеет запас, это делает его идеальным источником энергии.
Есть и коммерческие зарядные устройства такого типа, но каждое из них имеет свои недостатки:
1) USB Cell это NiMH AA батарейка, ёмкостью 1300mAh со съемным верхом, что позволяет ей быть подключенной непосредственно к порту USB. Отдельное зарядное не требуется. К сожалению, емкость является очень маленькой (большинство NiMH AA батареек имеют ёмкость 2500mAh), и каждая требует свой собственный порт.
2) Существует два ЗУ на USB батарейках АА типа, продаются под разными названиями, но они заряжают на очень низких скоростях в 100 мА. Дистрибьютор называет их "овернайт зарядное", при такой скорости заряда батарейка ёмкостью 2500мА будет заряжаться около 40 часов.
Зарядное устройство в этом проекте предназначено для зарядки двух АА NiMH или NiCd батареек любой ёмкости при токе около 470mA. Оно будет заряжать 700mAh NiCd батарейку около 1,5 часов, 1500mAh NiMH около 3,5 часов, и 2500mAh NiMH около 5,5 часов. Зарядное устройство включает средство автоматической зарядки, отключение схемы в зависимости от температуры, сами батарейки можно оставить в зарядном устройстве на неопределенный срок после отключения.

image

Технические условия
Это зарядное устройство имеет следующие технические характеристики:

Размер: 3.8 "Д х 1.2" Ш х 0,7 "В (9.7cm х 3.0cm х 1,5 см).
Аккумуляторы: Два, А.А. размера, NiMH или NiCd типа.
Зарядный ток: 470mA
Зарядка методом терминации: Температура батареи (33 ° С)
Tок подзарядки: 10 мА
Источник питания: настольный компьютер, ноутбук или USB-концентратор.
Условия эксплуатации: -15 ° С до 25 ° С (59 ° F до 77 ° F)

Схема
Сердце этого зарядного устройства Z1A, одна половина LM393-двойного компаратора напряжения. Выход (контакт 1) может быть в одном из двух состояний, высоком или низком. Во время зарядки, выход нагружен на транзистор Q1 и подает на него через резистор R5 около 5.2мА. Q1 имеет бета-около 90, так что к аккумуляторам будет доходить около 470mA зарядного тока.
Во время зарядки, R1, R2 и R4 образуют трехсторонний делитель напряжения, который дает 1,26В на не инвертирующий вход Z1A (контакт 3, Vref).

TR1 представляет собой термистор, что находится в прямом контакте с аккумулятором. Он имеет сопротивление 10 кОм при 25 ° C (77 ° F), которое обратно пропорционально температуре примерно на 3,7% за каждые 1С ° (1.8F °). R3 и TR1 образуют делитель напряжения, значение которого подается на инвертирующий вход (контакт 2, Vtmp). При температуре 20 ° C (68 ° F), TR1 имеет сопротивление 12kΩ, на входе Vtmp при этом 1.76V. По мере повышения температуры батареек, устойчивость TR1 падает. При 33 ° С (91 ° F), сопротивление будет около 7.4kΩ, на Vtmp при этом 1,26В, что соответствует напряжению Vref.

Когда температура поднимается выше 33 ° С, Vtmp станет меньше Vref , а выход Z1А будет высоким и откроет коллектор. Таким образом, ток, протекающий через R5 значительно снизится, так как он теперь ограничен R1, R2 и R4. В результате ток, протекающий через Q1 и батареи уменьшается до 10 мА.

Кроме того, поскольку R4 теперь подключен к +5 В через R5 и Q1, вместо того, чтобы давать 0.26V на Z1A, напряжения Vref изменится примерно до 2.37V. Это гарантирует, что, когда температура элемента падает, зарядное устройство не включится. Для того чтобы достичь Vtmp 2.37V, сопротивление TR1 должно было бы составить около 20 кОм, что соответствует температуре около 6 ° C (43 ° F), которая недопустима в комнате.

Z1B является другим компаратором LM393, и если внимательно посмотреть на схему, то он выполняет то же сравнение, что и Z1A. Это приводит в действие индикатор, обозначающий, что зарядка продолжается. R6 ограничивает ток светодиода до 10 мА. Запустив LED от собственного компаратора (который находится в чипе, используете эго или нет), текущий индикатор не оказывает никакого влияния на Vref.

Наконец, C1 используется, чтобы гарантировать, что зарядка начинается, когда пара батареек вставлена. При отсутствии батареек устройство отключено. Как только вторая из двух вставляется, положительная сторона С1 подключена к напряжению батарей (около 2,4). Через несколько секунд потенциалы на конденсаторе выравниваются, и он больше не влияет на схему.

image

Конструкция
Схемy лучше собрать на печатной плате.
Начните с установки всех резисторов и конденсатора. Резисторы должны быть установлены в горизонтальном положении. Установите LED1, чтобы отрицательный вывод был подключён к контакту 7 Z1B.
Установите Z1 рядом, гарантируя, что контакт 1 (обозначается маленькой точкой на одном углу IC) ориентирован, как показано на схеме размещения. Если хотите, используйте разъем для Z1.

Транзистор Q1 установите на небольшом радиаторе. Согните контакты на 90 ° только там, где они начинают сужаться. Не сгибайте их слишком резко, они могут сломаться.
Далее установите держатель батареек и приклейте его к плате. Затем закрепите термистор.
Последний шаг-подсоединение USB-кабеля, его можно либо купить, либо отрезать от старой мышки. Не попутайте распиновку проводов.

image

image

image

image

Тестирование
Перед подключением зарядного устройства к источнику питания, проверьте тщательно вашу работу. Убедитесь, что все компоненты правильно ориентированы (в частности, Q1, LED1, Z1, и держатель батареи).
Для начальных испытаний, я предлагаю вам использовать активный USB-концентратор. Используя концентратор, вы убедитесь, что зарядное устройство не получает питание от компьютера, так как дефект в зарядном устройстве может привести к повреждению источника питания. Кроме того, можно использовать регулируемый источник питания 5В, временно подключенный к +5 В и GND на печатной плате.

При подаче напряжения, проверьте, что индикатор не горит. Если он включен, использовать 330Ω резистор чтобы закоротить TR1 на мгновение. Если светодиод не гаснет, что-то не так.

С выключенным светодиодом, измерите напряжение между GND и Vref (контакт 3 Z1). Оно должно быть примерно 2.37V. Оно может быть немного больше или меньше в зависимости от конкретного напряжения и значения резистора. Также проверьте напряжение на Vtmp (контакт 2). При комнатной температуре, оно должно быть в диапазоне от 1.60V до 1,85, в зависимости от температуры.

Теперь вставьте пару одинаковых А.А. NiMH батареек, предпочтительно те, которые частично или полностью не разрядились. Как только вы вставите вторую батарейку, светодиод должен загореться. Измерьте напряжение Vref снова, оно сейчас должно быть около 1,26. Vtmp также может быть изменено немного, из-за падения напряжения питания, вызванного нагрузочной способностью блока питания.

Зарядное устройство в настоящее время заряжает и напряжение на клеммах аккумуляторов увеличится через некоторое время. Когда ёмкость достигает около 75 %, скорость заряда увеличивается снова. Наконец, когда батареи достигают 100 % заряда, напряжение начнет снижаться. От 15 до 20 минут спустя, зарядное устройство следует отключить.

Стоит также измерить ток заряда.
Если измеренный ток, I, слишком высокий или слишком низкий, замените R5 другим значением согласно следующей формуле:

R5 = 1,6хI
Используйте ближайшее стандартное значение. Например, если ток 510mA, замените R5 на 820Ω. Если измеренный ток был 420мА, используйте 680Ω резистор.

image

Корпус
Пока ЗУ используется без него, но в будущем хочу сделать для него пластиковый корпус.
Использование зарядного устройства
Использовать зарядное устройство легко. Просто подключите его к порту USB и вставьте две батарейки, которые нужно заряжать. Когда индикатор гаснет, зарядка завершена.
Так же батарейки должны бить одного типа и ёмкости, иначе одна зарядится больше, а другая меньше из-за отключения ЗУ при 33 °C.
В общем, если две клетки используются вместе в одном устройстве (цифровая камера, GPS и т.д.), то они будут оставаться в синхронизации, и могут быть заряжены вместе.

По завершении зарядки, зарядное устройство переключится на непрерывную подзарядку током 10мА. Этого значения достаточно, чтобы преодолеть естественный уровень саморазряда батарей, но оно достаточно низкое, что бы их можно было оставлять в зарядном устройстве на неопределенный срок. Тем не менее, не оставляйте их в зарядном устройстве, если оно не подключено к питанию USB порта.

image

Зарядка AAA батареек.
Если пружины в держателе батареи имеют достаточную длину, зарядное устройство может быть также использовано для зарядки пары батареек типа AAA. Тем не менее, в этом случае необходимо вставить прокладки между клетками и по бокам отсека, чтобы батарейки оставались в контакте с термистором. Только заряжать можно современные батарейки ААА, имеющие емкость 700mAh или больше.

Список деталей
Part Description
R1 56kΩ ¼W, 5% resistor
R2 27kΩ ¼W, 5% resistor
R3 22kΩ ¼W, 5% resistor
R4 47kΩ ¼W, 5% resistor
R5 750Ω ¼W, 5% resistor
R6 220Ω ¼W, resistor
TR1 10kΩ @ 25°C thermistor, approx. 3.7%/C° NTC
Radio Shack #271-110 (discontinued†)
C1 0.1µF 10V capacitor
Q1 TIP32C PNP transistor, TO-220 case
Z1 LM393 dual voltage comparator IC, DIP
LED1 Red, green, or yellow LED, 10mA
Other 2-cell AA battery holder
USB cable
Small heatsink

Author:

Отправить ответ

avatar
  Подписаться  
Уведомление о