Кт827А характеристики схема подключения: Схема мощного стабилизатора тока на 100

Содержание

Схема мощного стабилизатора тока на 100

В литературе не часто можно встретить описания стабилизаторов тока на 100...200 А, однако в некоторых процессах (гальваника, сварка и др.) они необходимы. На первый взгляд, для стабилизации таких токов необходимы и соответствующие мощные транзисторы.

Вашему вниманию предлагается стабилизатор тока на 150 А (с плавной регулировкой от нуля до максимума), выполненный на обычных, широко распространенных транзисторах серии КТ827. Примененное схемотехническое решение позволяет легко увеличить или уменьшить максимальный стабилизируемый ток.

Принципиальная схема

Принципиальная схема предлагаемого стабилизатора тока изображена на рис. 1. Как видно, нагрузка включена несколько необычно — в разрыв провода, соединяющего отрицательный вывод диодного моста VD5...VD8 с общим проводом устройства.

Рис. 1. Принципиальная схема мощного стабилизатора тока 150А на транзисторах.

Все мощные транзисторы VT1...VT16 включены по схеме с общим коллектором, но каждый из них нагружен на свой уравнивающий резистор (R4...R19), также соединенный с общим проводом.

Таким образом, через подключенную к розетке XS1 нагрузку стабилизатора протекает суммарный ток всех 16 транзисторов. Ток через каждый из транзисторов VT1...VT16 выбран около 9 А, что значительно меньше предельно допустимого значения для транзисторов КТ827А...КТ827В. При падении напряжения на транзисторе 10... 11 В рассеиваемая мощность достигает 100 Вт.

Разброс параметров транзисторов и сопротивлений резисторов R4...RI9 не имеет значения, так как каждый транзистор управляется своим операционным усилителем.

Выходы ОУ DA1.1...DA8.2 через транзисторы VT17...VT32 соединены с базами транзисторов VT1...VT16, а напряжения обратных связей поданы на инвертирующие входы с эмиттеров соответствующих транзисторов. ОУ поддерживают на инвертирующих входах (и, соответственно, на эмиттерах транзисторов VT1. ..VT16) такие же напряжения, какие имеются у них на неинвертирующих входах.

На неинвертирующие входы всех ОУ подано стабильное управляющее напряжение с резистивного делителя R2, R3, подключенного к выходу интегрального стабилизатора DA11. При изменении управляющего напряжения изменяется ток через каждый из резисторов R4...R19 и, соответственно, через общую нагрузку, подключенную к розетке XS1. Питаются ОУ от стабилизатора, выполненного на микросхемах DA9, DA10 и транзисторе VT33.

Детали и конструкция

Вместо составных транзисторов КТ827А в стабилизаторе тока можно применить транзисторы этой серии с индексами Б, В, Г или комбинации из двух транзисторов соответствующей мощности (например, КТ315 + КТ819 с любыми буквенными индексами).

Сдвоенные ОУ КР140УД20 заменимы на К157УД2 или на одинарные ОУ КР140УД6, К140УД7, К140УД14 и им подобные, стабилизатор 78L05 - на КР142ЕН5А, КР142ЕН5В или 78М05, транзисторы КТ315Е — на КТ3102, КТ603, диоды Д200 - на Д160. Вместо трансформатора ТПП232 (Т1) допустимо применение ТПП234, ТПП253 или любого другого с двумя вторичными обмотками на напряжение 16. ..20 В.

Резистор R1 может быть любого типа, R2 желательно применить высокостабильный, например, С2-29. Для регулирования тока нагрузки был использован переменный резистор СП5-35А (с высокой разрешающей способностью), но можно, конечно, применить и любой другой, обеспечивающий требуемую точность установки тока.

Конденсатор СЗ набран из десяти конденсаторов К50-32А, С4, С6 — К50-35, остальные — любого типа. Использовать в качестве СЗ один конденсатор большой емкости нельзя, так как он будет сильно перегреваться из-за того, что его выводы не рассчитаны на такие большие токи (недостаточное сечение провода).

Сдвоенные ОУ DA1...DA8, транзисторы VT17...VT32, интегральный стабилизатор напряжения DA11, резисторы R2, R3 и конденсаторы С4...С7 монтируют на печатной плате, изготовленной по чертежу, показанному на рисунке 2.

Рис. 2. Печатная плата для мощного стабилизатора тока.

Транзисторы VT1-VT16 закрепляют на теплоотводах, способных рассеять не менее 100 Вт каждый. Все 16 теплоотводов собраны в батарею, для их охлаждения применены четыре вентилятора, что позволило включать стабилизатор тока на долговременную постоянную нагрузку. Если нагрузка будет кратковременной или импульсной, можно обойтись и теплоотводами меньших размеров.

Резисторы R4...R19 изготавливают из высокоомного (манганинового или константанового) провода диаметром 1...2 мм и закрепляют на теплоотводах соответствующих им транзисторов Для охлаждения диодов VD5...VD8 используют стандартные теплоотводы, рассчитанные на установку диодов Д200 (обдув их вентилятором не требуется).

Микросхему DA9 и транзистор VT33 размещают на небольших пластинчатых теплоотводах. При монтаже стабилизатора тока нужно учитывать, что через некоторые цепи будет течь ток 150 А, поэтому их необходимо выполнить проводом соответствующего сечения.

Вторичная обмотка трансформатора Т2 должна обеспечивать напряжение около 14 В при токе нагрузки 150 А (хорошо подходит сварочный трансформатор). Падение напряжения на сопротивлении нагрузки стабилизатора должно быть не более 10 В (остальное напряжение падает на транзисторах VT1. VT16 и резисторах R4...R19).

При большем падении напряжения на нагрузке придется повысить напряжение вторичной обмотки трансформатора Т2, однако в этом случае необходимо проследить, чтобы мощность рассеяния каждого из транзисторов не превысила максимально допустимую.

Налаживание

Налаживание собранного из исправных деталей устройства сводится к установке максимального стабилизируемого тока подбором резистора R2. Это удобно сделать временно заменив последний включенным реостатом подстроечным резистором сопротивлением 1,5 - 2 кОм.

Установив его движок в положение максимального сопротивления а движок резистора R3 в верхнее (по схеме) положение и включив последовательно с нагрузкой амперметр на ток 150-200А (или просто подсоединив его к гнездам розетки XS1) включают стабилизатор в сеть и, уменьшая сопротивление подстроенного резистора, добиваются отклонения стрелки амперметра до соответствующей отметки шкалы. Затем измеряют сопротивление введен­ной части подстроенного резистора и заменяют его постоянным ближайшего номинала.

При максимальном токе 150А напряжение на эмиттерах транзисторов VT1 - VT16 должно быть около 1,88В. Поэтому налаживание можно проводить и по напряжению на эмиттере какого-либо из этих транзисторов, хотя точность установки тока при этом будет небольшой из-за разброса сопротивлений резисторов R4-R19.

Если необходимо увеличить или уменьшить отдаваемый в нагрузку максимальный ток можно соответственно увеличить или уменьшить число транзисторов и ОУ.

Таким образом, на основе описанного стабилизатора можно создать значительно более мощный источник тока. Подключая нагрузку к стабилизатору тока, следует помнить, что на "земляном" проводе будет плюсовой выход стабилизатора.

И. Коротков.

Блок питания 12В 6А (КТ827)

Что-то не так?
Пожалуйста, отключите Adblock.

Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.

Как добавить наш сайт в исключения AdBlock

Многим радиолюбителям-конструкторам в последнее время все чаще приходится иметь дело с радиоэлектронными устройствами, ориентированными на питание от бортовой сети автомобиля. Это мощные автомагнитолы и радиостанции, а также специальные электронные системы. Такие устройства потребляют ток около 3 А, поэтому при их эксплуатации в стационарных условиях возникает проблема блока питания.

Решить ее поможет выпрямительное устройство «ВУ-1» производства Ульяновского приборостроительного завода, предназначенное для зарядки автомобильных аккумуляторных батарей. Дело в том, что «ВУ-1», по сути, представляет собой половину нужного устройства. Оно имеет достаточную мощность (до 100 Вт). Остается только дополнить его стабилизирующей приставкой на напряжение 12 В при токе до 6 А. Приставка выполнена по классической схеме (рис. 3.17) стабилизатора напряжения из недефицитных деталей невысокой стоимости.

Работой составного транзистора VT1 управляет усилитель постоянного тока на транзисторе VT2, его эмиттер подключен к источнику образцового напряжения, состоящего из стабилитрона VD1 и резистора R2, а база — к измерительной цепи R3, R4. Резистор R1 служит для подачи смещения на базу транзистора VT1. Резистором R4 устанавливают необходимое выходное напряжение. Конденсаторы С4 и С5 предотвращают возбуждение стабилизатора по высокой частоте, а С1...СЗ образуют фильтр, сглаживающий пульсации выходного напряжения «ВУ-1».

Детали приставки монтируют на печатной плате из любого фоль-гированного материала. Печатные проводники сильноточных цепей должны быть шириной не менее 10 мм и хорошо облужены. Площадь сечения монтажных проводов — не менее 2 мм2.

Кт838а технические характеристики, схемы применения и аналоги

Содержание драгметаллов

Транзистор КТ803А(2T803А) содержит драгоценные металлы. В современных справочниках обычно приводится следующая информация: содержание золота — 0,02982гр., серебра — 0,154042гр. Вместе с тем, в различных даташит советских времен могут встречается и другие данные, очень близкие к указанным.

В основном ценятся изделия выпущенные по декабрь 1989 г. После этой даты встречается бракованные экземпляры или с пониженным содержанием драгметаллов. Поэтому, перед покупкой такого лома для аффинажа, они просят надпиливать шляпки у устройств, чтобы было видно золотистую подложку. На фотографии ниже продемонстрировано, как это обычно делают.

Распиновка

Цоколевка КТ819 зависит от его назначения. В советские времена устройство выпускали в двух вариантах корпусов: пластиковом КТ-28 (аналог зарубежного ТО-220) и металлостеклянном КТ-9(ТО-3). В настоящее время такое разделение продолжается и встречается в некоторых технических описаниях. Рассмотрим поподробней расположение выводов у указанного транзистора в пластмассовой упаковке КТ-28, cлева на право у него: эмиттер (Э), коллектор (К), база (Б).

Подобные устройства, особенно в металлическом корпусе, встречаются на российском рынке с каждым годом все реже. Это происходит из-за практически полного сокращения их производства в нашей стране и наличия в большом количестве недорогих аналогов от зарубежных компаний. Вот так выглядит КТ819 в корпусе КТ-9.

Если смотреть на него снизу, то база расположена слева, эмиттер справа. Металлическая подложка-корпус — это коллектор. Рассмотрим другие данные этой серии полупроводниковых триодов.

Технические характеристики

В 70-х годах, с ростом советской промышленности, появляются кремниевые мезапланарные переключательные NPN-транзисторы повышенной мощности

Важной особенностью таких устройств были повышенные характеристики предельно допустимых параметров

Максимальные

Предельно допустимые эксплуатационные характеристики КТ808 были достаточно высокими для того времени. Эти устройства обладали хорошим статическим коэффициентом усиления по току (h31е) – от 10 до 50. Имели увеличенное быстродействие: время включения-выключения составляло от  0.1 до 0.3 мкс, а рассасывания (Ts) от 0.75 до 3 мкс. Приведем другие основные параметры:

  • максимально допустимое постоянное напряжение между коллектором и эмиттером (условия измерения сопротивление перехода база – эмиттер R
    БЭ
    = 10 Ом, температура кристалла не более 100 ОС) – 100…120 В.
  • предельное импульсное напряжение между коллектором и эмиттером (условия измерения Uбэ = 2 В или Rбэ = 10 Ом, tu < 500 мкс tф > 30 мкс, Q > 7, Тп < +100 ОС) – до 250 В.
  • наибольшее возможное напряжение между эмиттером и базой – до 4 В.
  • предельно допустимый постоянный ток коллектора – до 10 А.
  • наибольшая постоянная мощность, рассеиваемая на коллекторе (при температуре корпуса от -60 ОС до + 50ОС) с теплоотводом – 50 Вт, и без него – 5 Вт.
  • максимальная температура кристалла до + 150 ОС.
  • рабочая температура окружающей среды от- 60 до +100 ОС.
  • вес устройства с фланцем — не более 34 гр.

Электрические

Далее приведем значения электрических значений у КТ808A. Производитель приводит эти данные для температуры окружающей среды не более +25 ОС. Условия, при которых проводилась проверка, представлены в дополнительных пояснениях к наименованиям параметров.

Аналоги

У старичка КТ808A есть современный аналог 2T808А. Он представлен во всех спецификациях российского предприятии АО «Научно производственное предприятие «Завод Искра», как усилительный транзистор специального назначения. КТ808АМ, КТ808А3 тоже являются полными аналогами этого отечественного производителя, но имеют другой корпус КТ-9. Других полноценных замен у данного прибора не существует. Встречаются конечно достаточно редкие 2Т808Б и КТ808АТ, но они были выпущены ограниченными партиями и даже сейчас их сложно найти в продаже.

Как можно заметить, замену сильно усложняет нестандартный корпус КТЮ-3-20, который никогда не производился за рубежом. Несмотря на это некоторые умельцы находят возможность подмены в ближайших по характеристикам: КТ808БМ, КТ808Б3, 2Т819 (КТ819), 2Т827 (КТ827), 2Т908 (КТ908), 2Т945 (КТ945).

В зависимости от типа схемы можно рассмотреть и зарубежные варианты: BDY47, 2N3055, 2N4913, 2N4914, 2N4915, 2N5427, 2N5429, 2SD201, 2SD202, 2SD203, KU606, 2SC1113, 2SC1618, 2SC1619, KD602, BUY55, KU606, 2SD867. Все они оснащены другими типами корпусов ТО-3 или ТО-66, поэтому перед заменой необходимо продумывать способ монтажа и охлаждения.

Комплементарная пара

У транзистора КТ808А отсутствует комплементарная пара. У самых первых «Бриг-001» в выходном каскаде усиления, в пару для КТ808АМ подбирали почти идентичный КТ808БМ. Такая конструкция обеспечивала хорошее усиление, но как оказалось имела и свои минусы, влияющие на качество звука. В последующем они были устранены с помощью комплементарных между собой КТ818ГМ и КТ819ГМ, что позволило значительно улучшить звучание указанных Hi-Fi-устройств.

Биполярный транзистор KT829B — описание производителя. Основные параметры. Даташиты.

Наименование производителя: KT829B

Тип материала: Si

Полярность: NPN

Максимальная рассеиваемая мощность (Pc): 60
W

Макcимально допустимое напряжение коллектор-база (Ucb): 80
V

Макcимально допустимое напряжение эмиттер-база (Ueb): 5
V

Макcимальный постоянный ток коллектора (Ic): 8
A

Предельная температура PN-перехода (Tj): 150
°C

Граничная частота коэффициента передачи тока (ft): 4
MHz

Статический коэффициент передачи тока (hfe): 750

KT829B
Datasheet (PDF)

5.1. kt829a.pdf Size:33K _no

n-p-n,
829
Ik max,A 8
Uo (U max),B100
U max,B 100
P max(P max), 60
T max,C 150
h31(h31) 750
U(U),B 3
I(I),A 3
U ,B 2
I(IR), 1500
f(fh31), 4
R -(R -),/ 2.08

5.2. kt829a.pdf Size:213K _inchange_semiconductor

isc Silicon NPN Darlington Power Transistor KT829A
DESCRIPTION
·Collector-Emitter Breakdown Voltage-
: V = 100V(Min)
(BR)CEO
·High DC Current Gain
: h = 750(Min) @I = 3A
FE C
·Low Saturation Voltage
·Minimum Lot-to-Lot variations for robust device
performance and reliable operation
APPLICATIONS
·Designed for use as complementary AF push-pull output
stage applications
ABSOLUTE

 5. 3. kt829a-b-v-g.pdf Size:713K _russia

5.4. kt8297.pdf Size:194K _integral

КТ8297
кремниевый биполярный
эпитаксиально-планарный
p-n-p транзистор
Назначение
Транзистор p-n-p кремниевый эпитаксиально-планарный в пластмассовом корпусе предназначен для
использования в линейных усилителях, сх

 5.5. kt8296.pdf Size:194K _integral

КТ8296
кремниевый биполярный
эпитаксиально-планарный
n-p-n транзистор
Назначение
Транзистор n-p-n кремниевый эпитаксиально-планарный в пластмассовом корпусе предназначен для
использования в линейных усилителях, сх

5.6. kt8290.pdf Size:199K _integral

КТ8290А
высоковольтный биполярный
эпитаксиально-планарный
n-p-n транзистор
Назначение
Транзистор n-p-n кремниевый эпитаксиально-планарный в пластмассовом корпусе. Предназначен для
использования в импульсных источн

Другие транзисторы… 2SC4355
, 2SC4356
, 2SC4357
, 2SC4358
, 2SC4359
, 2SC436
, 2SC4360
, 2SC4361
, BD139
, 2SC4363
, 2SC4364
, 2SC4365
, 2SC4366
, 2SC4367
, 2SC4368
, 2SC4369
, 2SC437
.

КТ818 , 2Т818 — кремниевый транзистор структуры p-n-p

Рис. 4. Изображение транзистора КТ818 на принципиальных схемах.

Рис. 5. КТ818(А…Г), 2Т818(А-2…В-2) в пластиковом корпусе, внешний вид и цоколевка.

Рис. 6. КТ818(АМ…ГМ), 2Т818(А…В) в металлическом корпусе, внешний вид и цоколевка.

Основные технические характеристики транзисторов КТ818:

ПриборПредельные параметрыПараметры при T = 25°CRТ п-к, °C/Вт
  при T = 25°C            
IК, max, АIК и, max, АUКЭ0 гр, ВUКБ0 max, ВUЭБ0 max, ВPК max, ВтTК, °CTп max, °CTК max, °Ch21ЭUКЭ(UКБ),ВIК (IЭ), АUКЭ нас, ВIКБ0, мАfгр, МГцКш, дБCК, пФCЭ, пФtвкл, мксtвыкл, мкс
КТ818А101525 5602512510015(5)5213 1000  2,51,67
КТ818Б101540 5602512510020(5)5213 1000  2,51,67
КТ818В101560 5602512510015(5)5213 1000  2,51,67
КТ818Г101580 5602512510012(5)5213 1000  2,51,67
КТ818АМ152025 51002512510020551 3 1000  2,51
КТ818БМ152040 51002512510020551 3 1000  2,51
КТ818ВМ152060 51002512510020551 3 1000  2,51
КТ818ГМ152080 51002512510020551 3 1000  2,51
2Т818А15208010051002515012520(5)(5)1 3 1000  2,51,25
2Т818Б1520608051002515012520(5)(5)1 3 1000  2,51,25
2Т818В1520406051002515012520(5)(5)1 3 1000  2,51,25
2Т818А21520801005402515010020(5)(5)1 3 10002000 1,23,13
2Т818Б2152060805402515010020(5)(5)1 3 10002000 1,23,13
2Т818В2152040605402515010020(5)(5)1 3 10002000 1,23,13

Подготовлено для сайта RadioStorage. net

Применение

На транзисторе КТ838 можно собрать регулируемый источник переменного тока. В данной схеме его включают последовательно с нагрузкой. Преимущество данной схемы, перед тиристорными, заключается в следующем: отсутствие дорогостоящих деталей, синусоидальное напряжение на выходе, простота схемы, отсутствие дефицитных деталей, во время работы не создает помех в электросеть.

Данный регулируемый источник переменного тока можно использовать вместо лабораторного автотрансформатора. С его помощью можно регулировать температуру паяльника, скорость вращения электродвигателя. Данный прибор можно использовать для регулирования напряжения, как при активной, так и при реактивной нагрузке.

При работе в такой схеме транзистор КТ838 выделяет много тепла и поэтому возникает проблема с его отводом.

Диодный мост VD1 обеспечивает протекание прямого тока через транзистор при любом полупериоде переменного напряжения сети. Выпрямленное диодным мостом VD2 напряжение сглаживается электролитическим конденсатором С1. При помощи переменного резистора R2 регулируется ток базы транзистора VТ1, а значит и его сопротивление в цепи переменного тока. Резистор R1 выступает в роли ограничителя тока. Диод VD3 нужен для того, чтобы напряжение отрицательной полярности не попало на базу транзистора. Таким образом, регулируя напряжение на базе, мы управляем сопротивлением транзистора, а значит и током в коллекторной цепи. Изменяя ток коллектора, мы меняем ток нагрузки.

В диодном мосте VD1 используется четыре диода Д223. Для диодного моста VD2 можно использовать диоды КЦ405А. Диод VD3 это Д226Б. Электролитический конденсатор С1 имеет емкость 200 мкФ и рассчитан на напряжение 16 В. Переменный резистор R2 обязательно должен быть проволочным ППБ15 или ППБ16 мощностью не менее 2,5 Вт. Его сопротивление 1 кОм. Трансформатор Т1 рассчитывается на мощность от 12 до 15 Вт. Напряжение на вторичной обмотке трансформатора 6 — 10 В. Транзистор должен быть установлен на радиаторе площадью не менее 250 см2.

Чтобы увеличить мощность регулируемого источника переменного тока, нужно заменить транзистор VТ1 и диоды, используемые в диодном мостике VD1. При замене транзистора КТ838 на КТ856 можно будет подключать нагрузку 150 Вт, при замене на КТ834 — 200 Вт, КТ847 — 250 Вт.

Данный регулируемый источник тока гальванически связан с электрической сетью. Поэтому его корпус должен быть сделан из диэлектрика, а на переменный резистор R2 нужно надеть изолированную ручку.

Также можете скачать DataSheet от компании ООО «Электроника и Связь»

Оцените статью:

Скачать бесплатно 80+ Руководств по обслуживанию Caterpillar

CAT logo

Caterpillar 6D16 Дизель Руководство по обслуживанию двигателя [PDF, ENG, 4,7 MB]

ТРУБОПРОВОД Caterpillar 72H Руководство по эксплуатации и обслуживанию [PDF, ENG, 6,9 MB]

Caterpillar 226B Эксплуатация Руководство [PDF, ENG, 5,8 MB]

Гусеница 246C / 256C / 262C / 272C / 277C / 287C / 297C Обучение обслуживанию PDF [PDF, ENG, 2,2 MB]

Гусеница 247/257/267/277 и 287 MultiTerrain Loaders Руководство по обслуживанию [PDF, ENG, 6. 9 МБ]

Гусеница 320D L [PDF, ENG, 2,5 МБ]

Caterpillar 325D [PDF, ENG, 1 MB]

Оператор Caterpillar 426 и руководство по эксплуатации [PDF, ENG, 13,7 MB]

Caterpillar 914G [PDF, ENG, 2,5 МБ]

Катерпиллар 950F Руководство по техническому обслуживанию [PDF, ENG, 1,2 MB]

Колесо Caterpillar 980H Загрузчик [PDF, ENG, 1 MB]

Caterpillar 988H Руководство PDF [PDF, ENG, 1,8 МБ]

Генераторная установка Caterpillar 3516C Спецификации [PDF, ENG, 1 MB]

Гусеница AD55B Подземный автопоезд [PDF, ENG, 1.3 МБ]

Caterpillar C18 Техническое обслуживание Руководство в формате PDF [PDF, ENG, 1 MB]

ПК Caterpillar CCM Руководство [PDF, ENG, 3,3 MB]

Гусеница Caterpillar Custom Справочник по обслуживанию [PDF, ENG, 4,2 MB]

Caterpillar D3K, D4K и Руководство по эксплуатации бульдозера гусеничного трактора D5K [PDF, ENG, 4 MB]

Сервис Caterpillar D10T Руководство [PDF, ENG, 5,2 MB]

Цифровое напряжение Caterpillar Регулятор - Руководство по обслуживанию [PDF, ENG, 44 MB]

Инструменты для двигателей Caterpillar Cat Overhaul 3512 Prueba [PDF, ENG, 12 MB]

Технические характеристики экскаватора Caterpillar 390D [PDF, ENG, 1 MB]

Дополнение к экскаватору Caterpillar для двигателя 3066 [PDF, ENG, 24 MB]

Руководство по эксплуатации и техническому обслуживанию телескопического погрузчика Caterpillar Th460B [PDF, ENG, 12 MB]

Caterpillar TM 5-3805-261-10 CAT 130G MIL Руководство по эксплуатации [PDF, ENG, 5. 8 МБ]

Руководство по регулировке гусеницы Caterpillar в формате PDF [PDF, ENG, 2,5 MB]

Caterpillar Устранение неисправностей двигателей 3516B и 3516B с большим рабочим объемом для машин Caterpillar [PDF, ENG, 1.7 МБ]

Caterpillar_Marfa_10 фев 2010 г. Руководство по использованию ICL LDH 1250 [PDF, ENG, 3 MB]

Обучение DLMS [PPT, ENG, 16,6 MB]

Самосвал Caterpillar 772 [PDF, ENG, 1,6 MB]

Руководство по эксплуатации Et Caterpillar [PDF, ENG, 1.6 МБ]

Инструменты 3500 caterpillar [PDF, ENG, 1,2 MB]

Электронное руководство по продаже пневматических грузовиков Caterpillar Forklift GP35N IC [PDF, ENG, 11 MB]

Cat серии 3600 и C280 Рекомендации по сериям жидкостей для дизельных двигателей [PDF, ENG, 0,9 MB]

Двигатель CAT Truck Руководство по программированию PDF [PDF, ENG, 5,7 МБ]

Гусеница - Поиск и устранение неисправностей двигателей C175-16 и C175-20 для машин, построенных Caterpillar [PDF, ENG, 3. 6 МБ]

Двигатель Caterpillar 3176B ESTMG [PDF, ENG, 541 KB]

Caterpillar 3208 Дизель Руководство по обслуживанию двигателя, копия 1 [PDF, ENG, 154 MB]

Двигатель Caterpillar 3208 График интервалов технического обслуживания [PDF, ENG, 1 MB]

Гусеница 3406e, C-10, Устранение неисправностей двигателей грузовых автомобилей C-12, C-15, C-16 и C-18 [PDF, ENG, 26 MB]

Caterpillar 3408C и 3412C Руководство по обслуживанию судовых генераторных установок [PDF, ENG, 1 MB]

Гусеница 3516 Газ Руководство в формате PDF для генераторной установки [PDF, ENG, 90 KB]

Воздухозаборник Caterpillar Система [PDF, ENG, 474 KB]

Caterpillar C11 и C13 Руководство по техническому обслуживанию промышленных двигателей [PDF, ENG, 1 MB]

Гусеница C11, C13, C15 и руководство по устранению неисправностей промышленных двигателей C18 PDF [PDF, ENG, 2 MB]

Caterpillar C27 и C32 Поиск и устранение неисправностей двигателей генераторных установок [PDF, ENG, 2. 3 МБ]

Caterpillar C27 и C32 Руководство по техническому обслуживанию двигателей для генераторных установок [PDF, ENG, 21 MB]

Гусеница C175-16 Руководство по эксплуатации двигателя генераторной установки [PDF, ENG, 62 MB]

Дизельный двигатель Caterpillar Системы управления [PDF, ENG, 588 KB]

Генератор Caterpillar G3516 Руководство по техническому обслуживанию [PDF, ENG, 1,2 MB]

Газовый двигатель Caterpillar 351B Сервисные руководства в формате PDF [PDF, ENG, 4,3 MB]

Органы управления Caterpillar Marine Руководство по установке [PDF, ENG, 7 MB]

Caterpillar Модель D100-6S Руководство в формате PDF для дизель-генераторной установки [PDF, ENG, 3 MB]

Руководство по эксплуатации Caterpillar Генераторы высокого напряжения SR4 [PDF, ENG, 1 MB]

Генераторы Caterpillar SR4B Руководство по эксплуатации и обслуживанию PDF [PDF, ENG, 1. 3 МБ]

Устранение неполадок Топливная система Caterpillar 3116 [DOC, ENG, 290 KB]

Caterpillar 320C, 330C Неисправность Коды [PDF, ENG, 210 KB]

Caterpillar C13, C15 и Двигатели C18 - диагностические коды неисправностей [DOC, ENG, 300 KB]

Caterpillar CID MID FMI Коды ошибок [PDF, ENG, 772 КБ]

Диагностические флэш-коды для Двигатели CAT C15 и C18 [PDF, ENG, 583 KB]

IT938G Caterpillar 38G II Коды ошибок [PDF, ENG, 125 KB]

Детали двигателя Cat 3406 Руководство [PDF, ENG, 3.2 МБ]

Детали двигателя Cat C15 Руководство [PDF, ENG, 2,5 MB]

Запчасти для трактора Cat D6R Руководство [PDF, ENG, 16,6 MB]

Запчасти Caterpillar 416E Экскаватор-погрузчик с ручным управлением [PDF, ENG, 21,6 MB]

Самосвал Caterpillar 773d (OHT) Каталог [PDF, ENG, 2,7 MB]

Колесо Caterpillar 938G II Руководство по запчастям для погрузчика [PDF, ENG, 26,9 MB]

Генератор Caterpillar 3406C Руководство по установке деталей в формате PDF [PDF, ENG, 7. 9 МБ]

Компания Caterpillar C9 Industrial Руководство по запчастям двигателя [PDF, ENG, 7,5 MB]

Гусеница C9 Marine Руководство по деталям вспомогательного двигателя и генераторной установки PDF [PDF, ENG, 6 MB]

Caterpillar C15 в режиме ожидания Руководство по деталям генераторной установки [PDF, ENG, 8,2 MB]

Caterpillar Catalogo Пекас [PDF, ES, 9,8 МБ]

Caterpillar Диагностика Инструменты - Каталог в формате PDF [PDF, ENG, 3,5 MB]

Компания Caterpillar Tractor Co .Она была образована в 1925 году в результате слияния Holt Manufacturing Company и C. L. Best Tractor Co. Его настоящее имя - Caterpillar Inc. - компания получила в 1986 г.

Основателями компании являются Бенджамин Холт и Дэниел Бест. Холт считался изобретателем первого серийного трактора на гусеницах - в 1904 году он разработал машину на паровой машине.

См. Также: Двигатель Caterpillar - Диагностические коды неисправностей MID

В 40-х гг.в ассортимент продукции Caterpillar были включены грейдеры, грейдеры, элеваторы, махровые изделия и генераторные установки. Экскаваторы Caterpillar Crawler начали производить в начале 60-х годов. Это изначально крупный производитель тяжелой техники в 80-х гг. компания начала продавать малогабаритное оборудование. Это произошло после резкого падения продаж во время глобального спада в начале 1980-е годы, вызванные ростом цен на нефть.

Гусеница D5

В 1996 году в условиях роста спроса на аренду компания создала совместно со своими дилерами филиал Cat Rental Store.

Продукция американцев появилась на российском рынке в 1913 году, когда разработка гусеничного трактора Benjamin Holt была удостоена золотой медали на соревнованиях по вспашке. Caterpillar продолжение его победное шествие в Россию, результатом которого стало открытие в 1973 г. представительства в Москве.

См. Также: Диагностические коды неисправностей FMI - двигатель Caterpillar

В 2000 году открыл первый завод в России - в г. Тосно Ленинградской области.Завод изначально специализировался на производстве комплектующих для больших машин, собираемых на заводе компания в Европе. В 2008 году начал выпуск экскаваторов Caterpillar на базе российской компании.

двигатель caterpillar c15

На сегодняшний день у американской компании четыре региональных офиса в СНГ: в Москве, Тосно (Ленинградская область), Новосибирске и Алматы.

См. Также: Диагностические коды неисправностей двигателя Caterpillar CID - часть 1

Caterpillar в настоящее время предлагает более 300 наименований продукции.Компания является ведущим мировым производителем строительного и горнодобывающего оборудования, двигателей, работающих на природном газе. и дизельное топливо, и промышленные газовые турбины. Машины и компоненты Caterpillar производятся на 50 заводах в США и еще на 60 заводах в 23 странах мира. за услуги по аренде специализированного оборудования, предлагаемые под торговой маркой Cat Rental Store, и различные варианты финансирования покупки оборудования - через специально созданную сеть продаж Caterpillar - Cat Financial.

Brand Cat - название крупной публичной компании.

На российском рынке через сеть стран СНГ техника Caterpillar также продается под торговой маркой O&K.

Продажи компании в 2010 году составили 42,6 миллиарда долларов.

Катерпиллар 3176Б

См. Также: Схема электрических соединений Caterpillar Shematics

-

, .

,,. . , 🙂

. -.

Icom IC-PS15 ENG + JPN 2,2 млн
Icom CT-16 РУС 178,4
Icom AG-20 РУС 893. 8
C Icom SM-20 ENG + JPN 37,4
Icom SP-20 JPN 1005,7
Icom IC-R20 РУС 10,3 млн
Icom IC-PS25 JPN 1.7 М
C Icom AG-25 ENG + JPN 516,5
C Icom AG-35 ENG + JPN 418,7
Icom AG-25 / AG-35 / AG-1200 РУС 234,4
Icom IC-28A / E / H РУС 3.8 M
- Icom IC-28A / E / H РУС 4. 8 M
Icom IC-100. РУС 8.9 M
Icom IC-100. РУС 20,6 млн
Icom IC-275. , 10 25 JPN + ENG 4.1 М
Icom IC-290. (). , «ЛОГИКА» JPN + ENG 3,1 млн
Icom IC-390 ENG + JPN 10,2 млн
- Icom IC-706 РУС 30,4 млн
- Icom IC-706MKII РУС 25.6 M
- Icom IC-706MKIIG! РУС 10,4 млн
Icom IC-706MKIIG РУС 4,1 млн
- Icom IC-729 РУС 1,2 млн
Icom IC-737, IC-732, IC-732M, 732S ENG + JPN 20. 3 м
Icom IC-736 РУС 205,8
Icom IC-736, IC-736M, IC-736S ENG + JPN 9,3 млн
Icom IC-746 РУС 921,3
Icom IC-746PRO РУС 3.8 M
Icom IC-756PROIII РУС 1,5 млн
Icom IC-765 (IC-760PRO) РУС 4,6 млн
- Icom IC-765 (IC-760PRO) РУС 27,2 м
Icom IC-780 РУС 30. 1 М
Icom IC-1271 РУС 11.9 M
Icom IC-1275 РУС 6,3 млн

Электрические символы для электрических схем

Стандартные электрические символы являются интеллектуальными, промышленными стандартами , и являются векторными для электрических схем.

Электрические символы фактически представляют компоненты электрических и электронных схем. В этой статье показаны многие из часто используемых электрических символов для построения электрических схем. Хотя эти стандартные символы упрощены, описание функций поможет вам понять.

Ниже перечислены наиболее часто используемые электрические и электронные символы, которые помогут вам быстро начать работу.

Имя Электрический символ Альтернативный символ Описание
земля / земля Этот символ обозначает клемму заземления, используемую для точки отсчета нулевого потенциала и защиты от поражения электрическим током.
эквипотенциальный Это символ, обозначающий детали с одинаковым напряжением (т. Е. С одинаковым электрическим потенциалом или равным потенциалом). Поскольку все эквипотенциальные поверхности имеют одинаковое напряжение, вы не будете шокированы, если коснетесь двух таких поверхностей, если вы также не коснетесь другой части с потенциалом, отличным от первых двух частей.
заземление Это связующее звено между различными металлическими частями машины, обеспечивающее электрическое соединение между ними. Его не следует рассматривать как связь с землей.
аккумулятор Это устройство, которое состоит из одной или нескольких электрохимических ячеек с внешними соединениями для питания электрических устройств и генерирует постоянное напряжение.
резистор Это электрический компонент, который снижает электрический ток, например, для ограничения тока, проходящего через светодиод. В схеме синхронизации используется резистор с конденсатором.
аттенюатор Это электронное устройство, которое снижает мощность сигнала, значительно искажая его форму волны, что является противоположностью усилителя.
конденсатор Это устройство с двумя выводами, которое накапливает электрическую энергию. Эффект конденсатора известен как емкость. Его также можно использовать в качестве фильтра для блокировки сигналов постоянного тока, но пропускания сигналов переменного тока.
аккумулятор Это устройство для хранения энергии, которое принимает, накапливает и высвобождает энергию, повышая или сбрасывая давление в системе.
антенна Антенна, также известная как антенна, представляет собой устройство, предназначенное для передачи или приема электромагнитных (например, теле- или радиоволн).
рамочная антенна Рамочная антенна - это радиоантенна, состоящая из петли (или петель) из провода, трубки или других электрических проводников, концы которых соединены с симметричной линией передачи.
кристалл Кварцевый генератор использует механический резонанс вибрирующего кристалла пьезоэлектрического материала для создания электрического сигнала с точной частотой.
автоматический выключатель Автоматический выключатель - это автоматический выключатель, предназначенный для защиты электрической цепи от повреждений, вызванных перегрузкой или коротким замыканием.
предохранитель Предохранитель - это устройство электробезопасности, которое обеспечивает защиту электрической цепи от перегрузки по току.
идеальный источник Идеальный источник напряжения - это двухконтактное устройство, которое поддерживает фиксированное падение напряжения на своих выводах. Он часто используется в упрощенном процессе анализа реальной электрической цепи.
общий компонент
преобразователь Преобразователь - это устройство, преобразующее энергию из одной формы в другую.Обычно преобразователь преобразует сигнал одного типа мощности в сигнал другого типа.
катушка индуктивности Катушка с проволокой создает магнитное поле, когда через нее проходит ток. Внутри катушки может быть железный сердечник. Его можно использовать как преобразователь, преобразующий электрическую энергию в механическую, если потянуть за что-нибудь. Это пассивный двухконтактный электрический компонент, используемый для хранения энергии в магнитном поле.
половина индуктора
пикап
пульс
зуб пилы
ступенчатая функция
пиропатрон Взрывной пиропатрон часто используется на сцене и в кино для запуска различных спецэффектов.
пиропатрон чувствительного звена
пиропатрон воспламенитель
сетевые фильтры

Сетевые фильтры защищают вашу электронику от скачков напряжения в вашей электрической системе.
инструмент Например, вольтметр - это прибор, используемый для измерения разности электрических потенциалов между двумя точками в электрической цепи. Ваттметр - это прибор для измерения электрической мощности в ваттах любой данной цепи.
материал
элемент задержки Элемент задержки обеспечивает заданную задержку между срабатыванием пороховых устройств.
постоянный магнит Постоянный магнит - это материал или объект, создающий магнитное поле.
магнитный сердечник
ферритовый сердечник
вилка воспламенителя
колокол Электрический звонок находится в обычном дверном звонке дома, и при активации он издает звонкий звук.
зуммер Электрический зуммер похож на звонок, который издает постоянный гудящий звук вместо одиночного тона или звука звонка.
тепловой элемент
термопара
термобатарея
фонарь Преобразователь преобразует электрическую энергию в свет, используемый для лампы, обеспечивающей освещение, например, автомобильной фары или лампы фонарика.
флюоресцентная лампа
оратор Громкоговоритель может принимать цифровой вход и преобразовывать его в аналоговые звуковые волны - одну из самых важных частей широкого спектра электрических устройств, таких как телевизоры и телефоны.
микрофон
осциллятор Он генерирует повторяющийся электронный сигнал, часто синусоидальный или прямоугольный.
Источник переменного тока Переменный ток, постоянно меняйте направление.
Источник постоянного тока Постоянный ток, всегда течет в одном направлении.

Каждый электрический компонент может иметь множество изображений, так как в настоящее время электрические символы могут отличаться от страны к стране. Некоторые электрические символы практически исчезли с развитием новых технологий.В случаях, когда существует более одного универсального электрического символа, мы попытались дать альтернативное представление.

Как найти и использовать электрические символы

Откройте EdrawMax и обширную коллекцию шаблонов электрических схем можно найти в категории Электротехника . Щелкните значок Basic Electrical , чтобы открыть шаблон, содержащий все символы для создания принципиальных схем. Создание электрической схемы становится простым, если у вас под рукой есть доступ к тысячам электрических шаблонов и символов.

Находясь в рабочей области EdrawMax, перетащите нужный символ прямо на холст. Вы можете изменить размер выбранного символа, перетащив маркеры выбора. Двусторонняя стрелка показывает направление, в котором вы можете переместить мышь, и вы можете перемещать символ только тогда, когда появляется четырехсторонняя стрелка.

В EdrawMax вы также можете изменить форму символа через плавающее меню. Он показывает, когда символ выбран или когда указатель находится над символом. Например, резистор может иметь 12 разновидностей. Посмотрите видео ниже, чтобы увидеть различные электрические символы и создать свою собственную принципиальную схему за считанные минуты!

Когда ваша электрическая схема будет завершена, вы можете экспортировать ее в JPG, PNG, SVG, PDF, Microsoft Word, Excel, PowerPoint, Visio, HTML одним щелчком мыши. Таким образом, вы можете делиться своими рисунками с людьми, которые не используют EdrawMax, без необходимости искать способы преобразования форматов файлов.

Другие электрические символы

Условные обозначения принципиальной схемы

Символы логических вентилей

Символы переключателей

Символы полупроводников

Символы пути передачи

Соответствующие символы

Обозначения компонентов интегральной схемы

Обозначения клемм и разъемов

Обозначения схемы технологического процесса

Обозначения на чертежах технологических процессов и КИПиА

Основные характеристики выключателя

Основные характеристики автоматического выключателя:

  • Его номинальное напряжение Ue
  • Его номинальный ток In
  • Диапазон регулировки уровня тока срабатывания для защиты от перегрузки (Ir [1] или Irth [1] ) и для защиты от короткого замыкания (Im) [1]
  • Его номинальный ток отключения при коротком замыкании (Icu для промышленных выключателей; Icn для выключателей бытового типа).

Номинальное рабочее напряжение (Ue)

Это напряжение, при котором автоматический выключатель рассчитан на работу в нормальных (невозмущенных) условиях.

Выключателю также присваиваются другие значения напряжения, соответствующие возмущенным условиям, как указано в разделе «Другие характеристики выключателя».

Номинальный ток (In)

Это максимальное значение тока, которое автоматический выключатель, оснащенный указанным реле максимального тока, может выдерживать неопределенное время при температуре окружающей среды, указанной изготовителем, без превышения установленных температурных пределов токоведущих частей.

Пример

Автоматический выключатель, рассчитанный на In = 125 A для температуры окружающей среды 40 ° C, должен быть оборудован соответствующим образом откалиброванным реле максимального тока (настроено на 125 A). Однако тот же автоматический выключатель может использоваться при более высоких значениях температуры окружающей среды, если он соответствующим образом «понижен». Таким образом, автоматический выключатель при температуре окружающей среды 50 ° C может выдерживать только 117 А в течение неограниченного периода времени или, опять же, только 109 А при 60 ° C, при соблюдении указанного температурного предела.

Таким образом, снижение номинальных характеристик автоматического выключателя достигается за счет уменьшения уставки тока отключения его реле перегрузки и соответствующей маркировки выключателя.Использование отключающего устройства электронного типа, разработанного, чтобы выдерживать высокие температуры, позволяет автоматическим выключателям (со сниженными номинальными характеристиками) работать при температуре окружающей среды 60 ° C (или даже 70 ° C).

Примечание: In для автоматических выключателей (в IEC 60947-2) обычно равно Iu для распределительного устройства, Iu - это номинальный непрерывный ток.

Типоразмер корпуса

Автоматическому выключателю, который может быть оснащен расцепителями максимального тока с различными диапазонами настройки уровня тока, присваивается номинал, который соответствует максимальному устройству отключения с настройкой уровня тока, которое может быть установлено.

Пример

Автоматический выключатель Compact NSX630N может быть оснащен 11 электронными расцепителями от 150 до 630 А. Номинал автоматического выключателя 630 А.

Уставка тока срабатывания реле перегрузки (Irth или Ir)

Помимо небольших автоматических выключателей, которые очень легко заменяются, промышленные автоматические выключатели оснащены съемными, т. Е. Заменяемыми реле максимального тока. Более того, чтобы адаптировать автоматический выключатель к требованиям цепи, которую он контролирует, и избежать необходимости прокладки кабелей слишком большого размера, реле отключения обычно регулируются.Уставка тока срабатывания Ir или Irth (обычно используются оба обозначения) - это ток, выше которого сработает автоматический выключатель. Он также представляет собой максимальный ток, который автоматический выключатель может выдерживать без отключения. Это значение должно быть больше максимального тока нагрузки IB, но меньше максимально допустимого тока в цепи Iz (см. Главу «Размеры и защита проводов»).

Реле теплового срабатывания обычно регулируются в пределах от 0,7 до 1,0 от In, но когда для этого режима используются электронные устройства, диапазон регулировки больше; обычно 0.4 к 1 разу В.

Пример

(см. рис. х37)

Выключатель NSX630N, оборудованный реле максимального тока Micrologic 6.3E на 400 А, установленным на 0,9, будет иметь уставку тока отключения:

Ir = 400 x 0,9 = 360 А

Примечание: Для автоматических выключателей, оборудованных нерегулируемыми реле максимального тока, Ir = In. Пример: для автоматического выключателя iC60N на 20 А,

Ir = In = 20 А.

Рис. H37 - Пример автоматического выключателя Compact NSX630N с номиналом 400 А от Micrologic, настроенным на 0.9, чтобы получить Ir = 360 A

Уставка тока срабатывания реле короткого замыкания (Im)

Реле отключения при коротком замыкании (мгновенного действия или с небольшой выдержкой времени) предназначены для быстрого отключения выключателя при возникновении высоких значений тока повреждения. Их порог срабатывания Im равен:

  • Либо установлены стандартами для отечественных автоматических выключателей, например IEC 60898 или
  • Указано производителем для автоматических выключателей промышленного типа в соответствии с соответствующими стандартами, в частности, IEC 60947-2.

Для последних автоматических выключателей существует большое количество отключающих устройств, которые позволяют пользователю адаптировать защитные характеристики автоматического выключателя к конкретным требованиям нагрузки (см. Рис. h38, Рис. h39 и рис. h40).

Рис. H38 - Диапазоны тока отключения устройств защиты от перегрузки и короткого замыкания для выключателей низкого напряжения

Тип реле защиты Защита от перегрузки
Защита от короткого замыкания
Бытовые выключатели IEC 60898 Термомагнитный Ir = In Низкое значение
тип B
3 In ≤ Im ≤ 5 In
Стандартная настройка
тип C
5 In ≤ Im ≤ 10 In
Цепь высокой уставки
тип D
10 In ≤ Im ≤ 20 In [a]
Модульные промышленные автоматические выключатели [b] Термомагнитный Ir = In
фиксированный
Низкое значение
тип B или Z
3. 2 In ≤ фиксированный ≤ 4,8 дюйма
Стандартная установка
тип C
7 In ≤ фиксированная ≤ 10 In
Высокая уставка
тип D или K
10 In ≤ фиксированная ≤ 14 In
Промышленные выключатели [b]

IEC 60947-2

Термомагнитный Ir = фиксированный Фиксированное: Im = от 7 до 10 дюймов
Регулируемый:
0,7 In ≤ Ir ≤ In
Регулируемый:
  • Низкое значение: от 2 до 5 дюймов
  • Стандартная настройка: от 5 до 10 дюймов
Электронный Долгая задержка
0. 1 2 Для промышленного использования стандарты IEC не определяют значения. Вышеуказанные значения даны только как общеупотребительные.

Рис. H39 - Кривая отключения термомагнитного выключателя

Ir : уставка тока срабатывания реле перегрузки (тепловая или с большой задержкой)
Im : уставка тока срабатывания реле короткого замыкания (магнитная или короткая задержка)
Ii : срабатывание реле мгновенного действия при коротком замыкании- текущая настройка.
Icu : Отключающая способность

Рис. H40 - Кривая отключения автоматического выключателя с усовершенствованным электронным расцепителем

Автоматический выключатель для развязки

Автоматический выключатель пригоден для разъединения цепи, если он соответствует всем условиям, предписанным для разъединителя (при его номинальном напряжении) в соответствующем стандарте. В таком случае он называется выключателем-разъединителем и маркируется на его лицевой стороне символом

К этой категории относятся все распределительные устройства Acti 9, Compact NSX и Masterpact LV линейки Schneider Electric.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного выключателя по току короткого замыкания связана (приблизительно) с cos φ петли тока короткого замыкания. Стандартные значения для этих отношений установлены в некоторых стандартах.

Номинальный ток отключения при коротком замыкании выключателя - это наивысшее (ожидаемое) значение тока, которое выключатель может выключить без повреждения. Величина тока, указанная в стандартах, представляет собой действующее значение переменной составляющей тока повреждения, т.е.е. переходная составляющая постоянного тока (которая всегда присутствует в наихудшем случае короткого замыкания) предполагается равной нулю для расчета стандартизованного значения. Это номинальное значение (Icu) для промышленных выключателей и (Icn) для выключателей бытового типа обычно выражается в кА, действующее значение.

Icu (номинальная предельная отключающая способность sc) и Ics (номинальная отключающая способность sc sc) определены в IEC 60947-2 вместе с таблицей, связывающей Ics с Icu для различных категорий использования A (мгновенное отключение) и B (с выдержкой времени). отключение), как описано в разделе Другие характеристики автоматического выключателя.

Испытания для подтверждения номинальных значений н.у. Отключающая способность автоматических выключателей регулируется стандартами и включает:

  • Рабочие последовательности, состоящие из последовательности операций, т. е. замыкание и размыкание при коротком замыкании
  • Сдвиг фаз тока и напряжения. Когда ток находится в фазе с напряжением питания (cosφ для цепи = 1), прерывание тока легче, чем при любом другом коэффициенте мощности. Прерывание тока при малых значениях запаздывания cosφ значительно труднее; схема с нулевым коэффициентом мощности (теоретически) является наиболее обременительным случаем.

На практике все токи короткого замыкания энергосистемы имеют (более или менее) отстающие коэффициенты мощности, а стандарты основаны на значениях, которые обычно считаются типичными для большинства энергосистем. Как правило, чем выше уровень тока повреждения (при заданном напряжении), тем ниже коэффициент мощности петли тока повреждения, например, вблизи генераторов или больших трансформаторов.

Рисунок h41 ниже, взятый из IEC 60947-2, связывает стандартизованные значения cos φ с промышленными автоматическими выключателями в соответствии с их номинальным значением Icu.

  • После последовательности включения - выдержки времени - включения / выключения для проверки емкости Icu выключателя проводятся дальнейшие тесты, чтобы убедиться, что:
    • Устойчивость к диэлектрику
    • Отключение (разъединение) исполнение и
    • Тест не повлиял на правильную работу защиты от перегрузки.

Рис. H41 - Icu, связанное с коэффициентом мощности (cosφ) цепи тока короткого замыкания (IEC 60947-2)

Icu cosφ
6 кА 0. 1 2 3 Установочные значения уровня тока, которые относятся к токовым тепловым и «мгновенным» магнитным расцепителям для защиты от перегрузки и короткого замыкания.

Индекс электрической схемы

Дополнительная розетка питания. 7
Кондиционер. 18
Антиблокировочная тормозная система (ABS). 17
Аудио. 7
Аккумулятор. 1
Система зарядки. 1
Зажигалка. 7
Контроль яркости приборной панели. 2
Электрический усилитель руля (EPS). 16
Модуль управления двигателем (ЕСМ). 19, 20
Органы управления вентиляторами. 18
Манометры. 2, 3
Регулятор фар. 4
Управление нагревателем. 18
Звуковой сигнал. 6
Замок зажигания. 1
Система зажигания. 1
Система иммобилайзера. 19
Индикаторы
Индикатор ABS. 2
Индикатор положения АКП. 3
Тормозная система. 2
Индикатор низкой температуры охлаждающей жидкости. 2
Индикатор двери / задней двери. 2
Индикатор EPS. 3
Индикатор передних противотуманных фар. 3
Индикатор дальнего света. 3
Индикатор низкого уровня топлива. 2
Индикатор низкого давления масла. 3
Индикатор неисправности. 3
Индикатор заднего противотуманного света. 3
Напоминание о ремне безопасности. 3
Индикатор отключения боковой подушки безопасности. 3
Индикатор SRS. 3
Указатель поворота / индикатор опасности. 2
Система блокировки. 3
Напоминание о вводе ключа. 12
Система доступа без ключа. 12, 13
Освещение, внешнее
Фонари заднего хода. 5
Стоп-сигналы. 5
Передние габаритные огни. 4
Фары. 4
Высокий стоп-сигнал. 5
Освещение номерного знака. 4
Задние фонари. 4
Указатели поворота. 5
Система освещения. 4
Освещение, интерьер
Потолочные светильники. 6
Точечные светильники. 6
Фонарь задней двери. 6
Навигационная система. 15
Электрические дверные замки. 12
Зеркала с электроприводом. 10
Модуль управления трансмиссией (PCM). 19, 20, 21
Стеклоподъемники. 8
Обогрев заднего стекла. 7
Система блокировки переключения передач. 3
Система запуска. 1
Люк. 9
Super Locking System. 13, 14
Дополнительная удерживающая система (SRS). 16
Указатель поворота / аварийный указатель поворота. 5
Датчик скорости автомобиля (VSS). 2
Сигнальная лампа
Высокая температура охлаждающей жидкости.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *