Как сделать турбину в домашних условиях – Самодельная газовая турбина из турбонаддува. Как сделать паровую турбину. Подготовка к установке турбонаддува своими руками

Содержание

принцип работы, устройство, кпд, схема

Идея практического применения энергии пара далеко не нова, использование паровых турбин в промышленных масштабах давно стало частью нашей жизни. Именно эти агрегаты, установленные на различных электростанциях и ТЭЦ, на 99% снабжают электричеством наши дома. Однако, некоторые мастера-умельцы умудряются внедрить принцип преобразования тепловой энергии в электрическую у себя дома. Для этого используется самодельная паровая турбина минимальных размеров и мощности. О том, как ее собрать в домашних условиях, и пойдет речь в данной статье.

Как работает паровая турбина?

В сущности, паровые турбины являются составной частью сложной системы, призванной преобразовать энергию топлива в электричество, иногда – в тепло.

На данный момент этот способ считается экономически выгодным. Технологически это происходит следующим образом:

  • твердое или жидкое топливо сжигается в паровой котельной установке. В результате рабочее тело (вода) обращается в пар;
  • полученный пар дополнительно перегревается и достигает температуры 435 ºС при давлении 3.43 МПа. Это необходимо для того, чтобы добиться максимального КПД работы всей системы;
  • по трубопроводам рабочее тело доставляется к турбине, где равномерно распределяется по соплам с помощью специальных агрегатов;
  • сопла подают острый пар на изогнутые лопатки, закрепленные на валу, и заставляет его вращаться. Таким образом, кинетическая энергия расширяющегося пара переходит в механическое движение, это и есть принцип действия паровой турбины;
  • вал генератора, представляющего собой «электродвигатель наоборот», вращается ротором турбины, в результате чего вырабатывается электроэнергия;
  • отработанный пар попадает в конденсатор, где от соприкосновения с охлажденной водой в теплообменнике переходит в жидкое состояние и насосом снова подается в котел на прогрев.

Примечание. В лучшем случае КПД паровой турбины достигает 60%, а всей системы – не более 47%. Значительная часть энергии топлива уходит с теплопотерями и расходуется на преодоления силы трения при вращении валов.

Ниже на функциональной схеме показан принцип работы паровой турбины совместно с котельной установкой, электрическим генератором и прочими элементами системы:

Чтобы не допускать снижения эффективности работы, на валу ротора располагается максимальное расчетное число лопаток. При этом между ними и корпусом статора обеспечивается наименьший зазор посредством специальных уплотнений. Простыми словами, чтобы пар «не крутился вхолостую» внутри корпуса, все зазоры минимизируются. Лопатка сконструирована таким образом, чтобы расширение пара продолжалось не только на выходе из сопла, но и в ее углублении. Как это происходит, отражает рабочая схема паровой турбины:

Следует отметить, что рабочее тело, чье давление после попадания на лопатки снижается, после рабочего цикла в первом блоке не сразу попадает в конденсатор. Ведь оно еще располагает достаточным запасом тепловой энергии, а потому по трубопроводам пар отправляется во второй блок низкого давления, где снова воздействует на вал посредством лопаток другой конструкции. Как показано на рисунке, устройство паровой турбины может предусматривать несколько таких блоков:

1 – подача перегретого пара; 2 – рабочее пространство блока; 3 – ротор с лопатками; 4 – вал; 5 – выход отработанного пара в конденсатор.

Для справки. Скорость вращения ротора генератора может достигать 30 000 об/мин, а мощность паровой турбины – до 1500 МВт.

Как сделать паровую турбину в домашних условиях?

Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.

В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П. Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают. Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.

Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.

Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.

С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника. В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя. Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.

Примечание. Самая сложная и трудоемкая часть устройства – это как раз змеевик. Изготовить его из медной трубки легче, чем из нержавейки, но она долго не прослужит. От контакта с открытым огнем медный перегреватель быстро прогорит, поэтому лучше сделать его своими руками из нержавеющей трубки.

Применение паровой турбины

Налив в чайник воды и поставив его на включенный газ, можно убедиться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электродвигателя появилась ЭДС. Для этого к нему стоит подключить светодиодный фонарик. Помимо питания для электрических лампочек, возможно и другое применение паровой турбины, например, для зарядки аккумулятора сотового телефона.

В условиях квартиры или частного дома подобная мини-электростанция может показаться простой игрушкой. А вот оказавшись в походе и взяв с собой турбированный чайник с электрогенератором, вы сможете оценить по достоинству его функциональность. Возможно, в процессе вам удастся найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника можно узнать, посмотрев видео:

Заключение

К сожалению, конструктивно паровые машины достаточно сложны и сделать дома турбину, чья мощность достигала хотя бы 500 Вт, весьма затруднительно. Если стремиться к тому, чтоб соблюдалась схема работы турбины, то затраты на комплектующие и потраченное время будут неоправданными, КПД самодельной установки не превысит 20%. Пожалуй, проще купить готовый дизель-генератор.

Паровая турбина — как сделать своими руками. Жми!

ig4gthbt0ih-_-jc-steam-proteus-turbine

ig4gthbt0ih-_-jc-steam-proteus-turbineПрименение пара на практике довольно известно в промышленных целях, поскольку паровые турбины уже давно используют данный принцип.

Именно такое оборудование работает на ТЭЦ и электростанциях. Правда, для некоторых мастеровых людей не составляет особой трудности сделать их аналоги скромных размеров в домашних условиях.

Принцип функционирования

Схема работы паровой турбины. (Для увеличения нажмите)

Схема работы паровой турбины. (Для увеличения нажмите)Схема работы паровой турбины. (Для увеличения нажмите)

Дело в том, что паровая турбина по большому счету это часть специального механизма, основная задача которого преобразование энергии пара в электрическую или тепловую.

Технологически весь процесс выглядит следующим образом:

  1. При сжигании различных видов топлива в топке вода превращается в пар.
  2. При дальнейшем перегреве пара до 435 ºС и давлении 3.43 МПа пар по трубам передается на турбину, где при помощи особых частей происходит его равномерное распределение по соплам.
  3. С сопел пар подается на специальные лопатки изогнутой формы, что крепятся на валу, из-за этого они вращаются, в результате чего кинетическая энергия трансформируется в механическую.
  4. Вал генератора является «электродвигателем» наоборот и вращается при помощи ротора турбины, и это позволяет вырабатывать электричество.
  5. Далее пар в конденсаторе при контакте с холодной водой опять превращается в воду, которую насосы снова закачивают на разогрев.

Как соорудить мини-паротурбину своими руками

662374_original

662374_originalВ Сети можно столкнуться с большим количеством вариантов, в которых рассматривается самодельный способ изготовления данного агрегата.

Для этих целей будет использоваться обычная консервная банка, проволока из алюминия, кусочек жести, и крепежные материалы.

Перечисленные материалы позволят сделать задуманное дома, не применяя для этих целей специальное оборудование и инструмент. Данная турбина будет наглядно демонстрировать превращение энергии пара в электричество.

Процесс изготовления

parovaya-turbina-svoimi-rukami-8

parovaya-turbina-svoimi-rukami-8В крышке банки проделывается два отверстия, в одно из которых впаивается часть трубки. Берется жесть и вырезается крыльчатка турбины и крепится к П-образной полоске.

После этого крепится полоска на другое отверстие, крыльчатка закрепляется лопастями напротив трубки.

Сооружение крепят на проволочную подставку, берут шприц с водой и ее заполняют, а снизу зажигают сухое топливо. Из трубки будет вырываться струя пара, что приведет в движение импровизированный ротор.

Правда, мощности такой турбины ни на что не хватит, поскольку кпд ее очень низкий. Она может рассматриваться только в качестве макета для того, чтобы понять принцип работы оборудования.

Изготовление небольшого генерирующего устройства электроэнергии своими руками

1290599045_05

1290599045_05Для этих целей вполне подойдет компьютерный кулер, из которого для изготовления крыльчатки будет сооружена маломощная турбина.

С кулера следует снять электрический двигатель и установить на одной оси с крыльчаткой.

Полученное устройство следует монтировать в круглом алюминиевом корпусе. За основу берется крышка чайника, а точнее ее диаметр.

В его дне проделывают отверстие, куда при помощи паяльника монтируется трубка, из которой делают змеевик. Противоположный конец трубки следует подвести к лопаткам крыльчатки, благодаря чему конструкция и работает.

Змеевик – это наиболее важная часть всего устройства. Для его изготовления лучше использовать проволоку из меди, правда с учетом малой толщины и постоянным перегревом она имеет небольшой срок эксплуатации. Поэтому, оптимально в устройство ставить нержавеющую трубку.

Функционирование самодельного парового оборудования и его особенности

695584

695584Итак, мини-электрическая машина готова и можно приступать к ее проверке.

Залив воду в чайник и поставив его на плиту замечаем, что при закипании образуется пар, энергии которого хватит для зарядки мобильного телефона или работы светодиодной лампочки.

Характерно, что в домашних условиях подобная электростанция может использоваться, как игрушка, поскольку ввиду малой мощности электричества его не хватит для работы оборудования или бытовой техники.

[advice]Стоит отметить: если вы отправляетесь в многодневный поход и возьмете с собой данное оборудование, то по достоинству сможете оценить все плюсы, которые оно дает. Например, вы сможете подзарядить аккумулятор мобильного телефона, фотоаппарата или других гаджетов.[/advice]

К сожалению, дома сооружение паровой турбины, мощность которой будет порядка 500 Вт и более очень сложно и сопряжено с большими денежными затратами.

Смотрите видео, в котором опытный пользователь демонстрирует возможности и устройство паровой турбины, изготовленной своими руками:

Паровая турбина своими руками на 10 квт

Как выполнить паровую турбину

Идея использования на практике энергии пара далеко не нова, применение паровых турбин в масштабах промышленности давно стало частью нашей жизни. Собственно эти агрегаты, установленные на самых разных электрических станциях и ТЭЦ, на 99% снабжают электротоком наши дома. Однако, некоторые мастера-умельцы умудряются внедрить принцип изменения энергии тепла в электрическую в своем доме. Для этого применяется рукодельная паровая турбина очень маленьких размеров и мощности. Про то, как ее собрать дома, и пойдёт речь в этой публикации.

Как не прекращает работу паровая турбина?

В сущности, паровые турбины являются важной частью сложной системы, призванной изменить энергию топлива в электричество, порой – в тепло.

Сейчас такой способ считается рентабельным. Технологически это происходит так:

  • твёрдое или жидкое горючее сжигается в паровой котельне. В результате рабочее тело (вода) обращается в пар;
  • получившийся пар дополнительно перегревается и может достигать температуры 435 ?С при давлении 3.43 МПа. Это нужно для того, чтобы достигнуть самого большого КПД работы всей системы;
  • по трубопроводам рабочее тело транспортируется к турбине, где одинаково делится по соплам при помощи специализированных агрегатов;
  • сопла подают острый пар на изогнутые лопатки, закрепленные на валу, и заставляет его вращаться. Подобным образом, кинетическая энергия расширяющегося пара переходит в механическое движение, это и есть рабочий принцип паровой турбины;
  • вал генератора, представляющего собой «электрический двигатель наоборот», крутится ротором турбины, благодаря чему формируется электрическая энергия;
  • отработанный пар проникает в конденсатор, где от соприкасания с охлажденной водой в теплообменном аппарате переходит в состояние жидкости и насосом опять подается в котел на прогрев.

Примечание. Как максимум КПД паровой турбины может достигать 60%, а всей системы – не больше 47%. Большая часть энергии топлива уходит с потерями тепла и тратится на преодоления силы трения во время вращения валов.

Ниже на практической схеме показан рабочий принцип паровой турбины одновременно с котельной, электрогенератором и прочими системными элементами:

Чтобы не допускать снижения рабочей эффективности, на роторном валу размещается максимальное расчетное количество лопаток. При этом между ними и корпусом статора обеспечивается минимальный просвет при помощи специализированных уплотнений. Обычными словами, чтобы пар «не крутился попусту» изнутри корпуса, все зазоры минимизируются. Лопатка сконструирована поэтому, чтобы увеличение пара продолжалось не только на выходе из сопла, но также и в ее углублении. Как это происходит, отображает рабочая схема паровой турбины:

Нужно сказать, что рабочее тело, чье давление после проникания на лопатки уменьшается, после рабочего цикла в первом блоке не сразу проникает в конденсатор. Ведь оно еще располагает достаточным запасом энергии тепла, а поэтому по трубопроводам пар отправляется во второй блок малого давления, где опять действует на вал при помощи лопаток другой конструкции. Как показано на рисунке, устройство паровой турбины может учитывать несколько подобных блоков:

1 – подача перегретого пара; 2 – пространство для работы блока; 3 – ротор с лопатками; 4 – вал; 5 – выход отработанного пара в конденсатор.

Для справки. Частота вращения ротора генератора достигает 30 000 оборотов в минуту, а мощность паровой турбины – до 1500 МВт.

Как выполнить паровую турбину дома?

Много интернет-ресурсов публикует метод, по которому дома и с использованием минимального количества инструментов делается мини паровая турбина из консервной банки. Кроме самой банки потребуется проволока из алюминия, маленький кусочек жести для вырезания полосы и крыльчатки, и также крепежные элементы.

В крышке банки выполняют 2 отверстия и впаивают в одно кусочек трубки. Из куска жести режут крыльчатку турбины, закрепляют ее к полосе, согнутой в виде буквы П. После полосу крепят к другому отверстию, разместив крыльчатку поэтому, чтобы лопасти пребывали напротив трубки. Все технологичные отверстия, созданные в ходе работы, тоже запаивают. Изделие необходимо установить на подставку из проволки, наполнить водой из шприца, а снизу распалить сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струйки пара, вырывающегося из трубки.

Ясно, что эта конструкция служит лишь прототипом, игрушкой, потому как эта паровая турбина, выполненная собственными руками, не может применяться с какой-нибудь целью. Очень мала мощность, а о каком-нибудь КПД и речи не идет. Разве что можно выказывать на ее примере рабочий принцип теплового мотора.

Мини-генератор электрической энергии можно по настоящему сделать из старого металлического чайника. Для этого, помимо самого чайника, понадобится медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и маленький кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет выполнена паровая турбина небольшой мощности.

С кулера снимается электрический двигатель и ставится на одной оси с крыльчаткой. Получившееся устройство устанавливается в круглом алюминиевом корпусе, по размеру он должен подойти взамен крышки чайника. В дно последнего выполняется отверстие, куда впаивается трубка, а с наружной стороны из нее делается полотенцесушитель. Как можно заметить, конструкция паровой турбины очень близка к реальности, потому как полотенцесушитель роль играет пароперегревателя. Второй конец трубки, как несложно догадаться, подводится к импровизированным лопаткам крыльчатки.

Примечание. Очень сложная и сложная часть устройства – это как раз полотенцесушитель. Сделать его из медной трубки легче, чем из нержавеющей стали, однако она долго не будет служить. От контакта с открытым огнём медный перегреватель быстро прогорит, благодаря этому лучше выполнить его собственными руками из нержавеющей трубки.

Использование паровой турбины

Налив в чайник воды и поставив его на включеный газ, можно удостовериться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электрического двигателя возникла ЭДС. Для этого к нему стоит присоединить светодиодный фонарик. Кроме питания для электрических лампочек, возможно и другое использование паровой турбины, к примеру, для зарядки аккумулятора мобильного телефона.

В условиях квартиры или приватного дома аналогичная мини-электростанция на первый взгляд покажется простой игрушкой. А вот очутившись в походных условиях и взяв с собой бездымоходный чайник с электрическим генератором, вы сумеете оценить по праву его практичность. Возможно, в процессе у вас получится найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника узнать можно, посмотрев видео:

Заключение

К несчастью, конструктивно паровые машины довольно сложны и выполнить дома турбину, чья мощность достигала хотя бы 500 Вт, очень трудно. Если стремиться к тому, чтобы соблюдалась рабочая схема турбины, то расходы на комплектующие и затраченное время будут неоправданными, КПД самодельной установки не превысит 20%. Пожалуй, легче приобрести готовый дизель-генератор.

Паровая турбина: рабочий принцип 3 разновидностей агрегата

Паровая турбина приносит в наши дома свет и тепло Паровая турбина – это тепловой мотор, который видоизменяет энергию тепла из пара в энергию механическую вращения вала. При помощи паропровода нагретый свежий пар, поступая из котла, подходит к паровой турбине, после этого большая часть высвобожденной энергии тепла преобразуется в механическую работу.

Работа паровой турбины

В турбинной установке находящейся в котле, три среды: вода, пар, и также конденсат создают такой себе закрытый цикл. В процессе изменения, при этом, теряется лишь минимальное количество пара и воды. Это кол-во воды регулярно восполняется добавкой в установку сырой воды, которая проходит заранее через фильтр для очистки воды. Там вода обрабатывается химическими составами, нужными для убирания находящихся в водной массе, не необходимых примесей.

Рабочий принцип:

  • Отработавший пар с достаточно-таки пониженными давлением и температурой проникает из турбины в конденсатор.
  • Там он встречает на пути систему разных трубок, по которой постоянно прокачивается при помощи насоса циркуляционного охлаждающая вода. Берут ее в основном из рек, озер или водоемов.
  • Соприкасаясь с холодной поверхностью трубка конденсатора, выработавший пар конденсируется, превращаясь таким образом, в воду (конденсат).
  • Постоянно откачиваясь из конденсатора специализированным насосом, конденсат через подогреватель проникает в деаэратор.
  • Оттуда насос передает его в паровой котел.

В установке есть также турбонаддув и подогреватель. Его функцией считается необходимость сообщить конденсату добавочное кол-во тепла. Современные паротурбинные установки в основном оснащены несколькими подогревателями. К тому же, для подогрева питательной жидкости нужна, в основном, теплота от пара, который отбирается из промежуточных ступенек самой турбины в границах 15-30% от совокупного расхода пара. Это даёт прекрасное увеличение КПД установки.

Современная паровая электростанция в действии

Тепло, отработанного в турбине пара поступает в конденсатор через трубки. Кол-во высвобождаемого тепла велико, и, поэтому, охлаждающая вода должна быть нагрета несущественно. В виду этого, расход у мощных паротурбинных установок весьма велик. Порой он может достигать до 20000 м3/час. Тем более если мощность станции 100000 кВт. В данных случаях охлаждающая подается вода циркулярным насосам из речки и после выполнения собственной функции сливается опять в реку, только ниже места забора.

Действие крепкой струйки пара на лопасти приводит вал во вращение в паровых турбинах

В паровых турбинах строение такое, что возможная энергия пара, пройдя процесс расширении в соплах, превращается в кинетическую энергию, способную перемещаться с высокой скоростью. Мощная струйка пара подается на изогнутые лопатки, которые закреплены по окружности диска, насаженного на вал. Действие крепкой струйки пара на лопасти и приводит вал во вращение.

Чтобы изменить энергию пара в кинетическую, необходимо обеспечить ему свободный выход из парогенератора, в котором он находится, по соплу, в пространство. Плюс ко всему, давление пара нужно больше, чем давление того самого пространства. Необходимо знать, что пар будет выходить с очень большой скоростью.

Скорость выхода пара из сопла зависит от подобных факторов:

  • От температуры и давления до увеличения;
  • Какое давление есть в пространстве, в которое он вытекает;
  • Форма сопла, по которому вытекает пар, также оказывает влияние на скорость.

Вал турбины должен соединяться с валом самой рабочей машины. Какой она будет, зависит от области, в которой применяется рабочая машина. Это может быть энергетика, металлургия, приводы турбогенераторов, воздуходувные машины, нагнетатели воздуха, насосы, водный и ЖД транспорт.

Устройство паровой турбины

Паротурбинная установка – считается главным типом двигателей на современных тепловых и атомных электрических станциях, которые вырабатывают 85 – 90% электрической энергии, потребляемой по всему миру.

Вид и устройство паротурбинной установки

Паровые турбины выделяются большой быстроходностью. Она в основном равна 3000 об. мин., и имеют при этом сравнительно небольшие размеры и массу. В сегодняшней промышленности сегодня выпускают турбоагрегаты разных мощностей, даже такие, где в одном агрегате при высокой экономности более тысячи милионов ватт.

Изобретен этот аппарат издревле. В его создании участвовали многие ученые мужи. В Российской Федерации основоположником строительства паровых турбин в большинстве случаев считают Поликарпа Залесова, который внедрял данные строения в Алтайском крае в начале девятнадцатого столетия.

Паровые турбины разделяют на:

  • Конденсационные;
  • Теплофикационные;
  • Специализированного назначения;
  • Оживленные;
  • Реактивные;
  • Активно-раективные.

Самая популярная – конденсационная турбина – не прекращает работу с выпуском отработанного пара в конденсатор с глубоким вакуумом. От промежуточных ступенек ее турбин, в основном, берется определенное количество пара в целях регенерации. Основное назначение конденсационных установок – выработка электрической энергии.

Строение паровой турбины

Паровые турбины возводят в качестве неподвижных конструкций, которые применяют по большей части на фабричных силовых установках или электрических станциях, и транспортных, нужных для работы судовых котлов.

независимо от рабочего принципа, сущность происходящих действий останется неизменной – струйка пара, вытекающая из сопла, будет направляться на лопатки диска, имеющегося на валу, и тот приводится в действие.

Паровые турбины отличают по следующим свойствам:

  • Оборотам;
  • Количеству корпусов;
  • Направлению движения струйки пара;
  • Числу валов;
  • Размещению конденсационной установки;
  • Практичности.

Паровые турбины предоставляют долгую производство механической энергии при температуре охлаждающей их воды до 330 С Цельсия. Также турбины должны исполнять продолжительную хорошую работу с нагрузкой номинальной от 30 до 100%. Что нужно для регулирования распределения электрической нагрузки. Самые популярные конденсационные турбины обязаны давать долгое действие при температуре выхлопного процесса до 700 С.

Паровая электростанция: специфики работы установки

Система регулирования работы турбины при резком сбросе мощности и отключении ТГ от сети, должна лимитировать быстрый заброс скорости вращения ее ротора, и не позволить срабатывания датчика безопасности. Работа турбины не исключают вероятность мгновенного сброса электронапряжения до нуля. Также турбины должны предоставляет возможность возобновить нагрузку до исходной, или любой иной цифры в регулировочном диапазоне, при скорости не меньше 10% от номинальной мощности за секунду.

Паровые турбины применяют по большей части на фабричных силовых установках или электрических станциях

Обязательные рабочие режимы:

  • С отключенным подогревателем большого давления;
  • С нагрузкой в рамках своих нужд в границах 40 минут после сброса;
  • На холостом ходу 15 минут после сброса электро- нагрузки;
  • Для проведения проверки на холостом ходу 20 часов после пуска турбины;
  • Служебный срок рабочих турбин между ремонтами обязан быть не меньше 4 лет;
  • Новые агрегаты имеют гарантию в пять лет;
  • Период работы на отказ у паровой турбины не меньше 6000 часов;
  • Показатель готовности у установки не меньше 0,98.

Паровая турбина имеет служебный срок больше тридцати лет. Как исключение из правил лишь быстроизнашивающиеся детали и детали.

Паровая турбина (видео)

Паровая турбина собственными руками – аппарат, который считается сердцем почти что любой электрические станции, действует по принципу превращения энергии из паровой в механическую. Однако такую машину вполне можно создать и дома. Разумеется это будет мини-устройство, и быстрее всего ваша рукодельная турбина будет газовая или воздушная, однако данная модель также пригодится в обиходе как и паровая турбина для ТЭЦ. Правильно разработанные схема, чертеж и рисунок смогут помочь вам достигнуть хорошего результата от самоделки.

Домашняя ТЭЦ на микротурбине

Можно ли дома иметь свою хорошую, небольшую систему теплогенерации и электричества? Компания MTT Micro Turbine Technology BV (Нидерланды) на данный вопрос ответила утвердительно, создав установку EnerTwin на основе микротурбины, одновременно генерирующей 3 кВт электричества и 15 кВт тепла. Микро-ТЭЦ EnerTwin разработана для замены котлов отопления для малого бизнеса и подсобных хозяйств. Главное внимание уделяют невысокой себестоимости, надежности, уменьшению шумового уровня и невысоким рабочим затратам.

Смотрится МикроТЭЦ как простой домашний прибор

Микро-ТЭЦ одновременно вырабует (когенерирует) тепловую и электроэнергию в местах, где они две популярны. В основном, ключевым потребителем энергии микро-ТЭЦ считается система обогрева. Электричество, в данном случае, становится побочным продуктом, производимым по очень невысокой себестоимости. Важное достоинство микро-ТЭЦ в том, что энергия топлива применяется почти что полностью. В этом состоит важное отличие от обыкновенных электростанций, где большое количество тепла теряется в атмосферу. Более того, микро-ТЭЦ экономит на передаче электрической энергии от электростанций до конечных клиентов, благодаря уменьшению потерь. Любое превышение выработки электрической энергии от микро-ТЭЦ можно экспортировать в электрическую сеть (в странах Европы, Соединённых Штатов и др.). Есть специализированные программы стимулирования для поставщиков электрической энергии. К примеру в Германии, для тех кто поставляет остатки генерируемой электрической энергии в сеть, дополнительно даются льготы. Это выполняет плюсы когенерации еще большими.

Распределенная система генерации энергии на базе микро-ТЭЦ EnerTwin

Методика

EnerTwin система микро-ТЭЦ выстроена на основе микротурбины. Рабочий принцип состоит в следующем:

Главная схема рабочих узлов микро-ТЭЦ

  1. Окружающий воздух поступить и сжимается в компрессоре.
  2. Сжатый воздух заранее греют в рекуператоре.
  3. В топке, добавляется тепло при горении топлива.
  4. Горячий сжатый газ становится шире в турбине, что обеспечивает энергию механического типа для нагнетателя воздуха и генератора. «Инвертер» видоизменяет энергию, подаваемую генератором в напряжение и частоту электрические сети ( 230 ?50 Гц).
  5. Расширенный газ после турбины нагревает воздух, сжатый компрессором в рекуператоре (см.2).
  6. Остаточное тепло, оставшееся в выходном газе после рекуператора, поглощается в теплообменном аппарате с водой.
  7. Горячая вода применяется для централизованного отопления и /или горячего водообеспечения.

Устройство внутри EnerTwin

Турбина

Газовые турбины известны собственной большой мощностью, невысоким весом и рабочими затратами. Применение технологии турбонаддува, разработка которой финансировалась государством, приводит к невысокой себестоимости производства. Газотурбинные элементы оптимизировались для использования в турбогенераторе. Скоростной турбогенератор при скорости вращения 240 тысяч оборотов за минуту имеет чистый электрический к.п.д. 15% (19% результативность мощности на валу). Одновременно с низкими расходами, это обеспечивает большой потенциал для экономически продуктивных микро-ТЭЦ систем.

Новая идея

При разработке EverTwin компания применила нетрадиционный подход для разработки хорошего, очень малого газотурбинного мотора. Данный проект построен на вращающейся топке в комбинировании с практичным компрессором.

Результативность газовой турбины в большой мере зависит от потерь из-за утечек потока, потерь тепла и трения. Эти потери становятся еще существенней при попытках создать турбины микро-мощности, масштабируя простые газовые турбины. При уменьшении турбины соотношение щелей и размеров лопастей турбины уменьшается. Также, при уменьшении размера (уменьшается количество Рейнольдса) вязкие потери на трение возрастают, чем в традиционных турбогенераторах. В результате , есть основательное ограничение на результативность микротурбин с обыкновенной конфигурацией.

В концепции вращающейся топки указанные выше масштабные эффекты не так видны. Основной спецификой считается монолитный ротор.

Монолитный ротор микротурбины

Монолитный ротор в разрезе

По большей части , турбина состоит из одного ротора, в котором размещены центробежный нагнетатель воздуха, вращающаяся топка и реакционная турбина. У вращающейся топки, нагнетатель воздуха не имеет диффузора и турбина не имеет лопаток.

Электрический генератор

Успешный высокочастотный генератор на постоянных магнитах видоизменяет энергию механического типа микротурбины в электрическую энергию.
Генератор полностью интегрирован в ротор турбины, избегая расходов и потерь от добавочных подшипников и муфт.

Параметр шума

Микротурбины излучают только высокочастотный шумовой фон, который вероятно будет хорошо заглушен. Если сравнивать с обыкновенными генераторами и турбинами, EnerTwin имеет очень небольшой уровень шума.

Специфика EnerTwin

  • Электрическая мощность (макс/мин) — 3,0 /1,0 кВт
  • Теплопроизводительность (макс/мин) — 14,4 /5,0 кВт
  • Электрический КПД (макс/мин) — 15 /10 %
  • Самый большой суммарный КПД — 87% (зависит от показателей системы обогрева, к примеру температуры обратного трубопровода)
  • Частота вращения ротора (макс/ мин) — 240 / 180 тысяч оборотов в минуту
  • Употребление газа (38.5 MJ/nm3, макс/мин) — 1,87 /0,84 nm3/h
  • Горючее — сетевой газ
  • Параметры системы обогрева (подающая/обратная труба) — 80 ?60 °С
  • Шумовой фон — 55 dB(A) 1m
  • Размеры — 970 x 610 x 1120мм
  • Вес — 225 кг
  • Диаметр дымоотвода — 100мм
  • Электрическая сеть — 230 В/50 Гц

Основное использование

По мнению разработчика основное использование микро-ТЭЦ:

  • Малые и средние предприятия;
  • Отрасли с сравнительно небольшим стойким требования тепла;
  • Конференц-залы;
  • Большие дома для жилья;
  • Дома с бассейном и /или сауной;
  • Загородные дома;
  • Школы, спортивные школы, спортивные залы, студии и кружки;
  • Коммунальные строения;
  • Автозаправки;
  • Гостиницы и рестораны;
  • Магазины;
  • Лечебные центры;
  • Дома престарелых;
  • Правительственные строения, например залы, полицейские станции, библиотеки.

Сертификация

В феврале 2013 года EnerTwin получили документ CE для полевых испытаний. Получение этого сертификата собой представляет существенную веху в формировании EnerTwin. Документ был предоставлен по KIWA после всесторонних испытаний работы турбин на газообразном топливе и вопросам безопасности труда. Свидетельство KIWA на самом деле для абсолютно всех стран Европейского Союза, а еще в Норвегии, Хорватии, Турции и Швейцарии.

Европейский документ безопасности KIWA

Где взглянуть?

МТТ в скором времени будет принимать участие на выставках:

  • Hannover Messe в Германии с 7 по 11 апреля 2014 года, павильон Holland Energy House, холл 27 G24
  • MCE в Милане с 18 по 21 марта 2014 г. в павильоне 5, стенд №. E02 10.

Паровая турбина малой мощности, минитэц


Мини турбина (генератор) своими руками

Всем привет, вот хочу поделиться идеей, которая меня когда-то в тёмном доме посетила, почему в тёмном? Потому что приходилось сидеть без света около четырех суток из-за проблем на подстанции.

Суть идеи полагает в том, чтобы собрать рабочую турбину и при этом затратить минимум времени/ресурсов буквально из ничего.

Был у меня вентилятор 80-ка дохлый запускался но «глох» почему-то… Взял крыльчатку в руки и давай крутить её. Ну и собственно так и пришла идея создания первой турбины, монстра из бутылки.

На фото показано из чего состоит, щуп как-то попал в руки случайно, но форсунка вышла из него нормальная.

Из такой конструкции можно было извлечь 200-300 (410 при КЗ) миллиампер и 4.5-5 Вольт в нагрузке (около 1 ватта).

При холостом ходе турбина выдавала около 8 Вольт что не очень то и подходило мне для основной идеи заряжать телефон «из крана» . Зарядка разряженного телефона довольно интересный процесс, а именно при подаче тока на телефон через штекер, он заряжает импульсами по 3-5 секунд а потом отключается на 1-2 сек и опять… А при этом турбина начинала набирать обороты, ну и соответственно и напряжение возрастало до 7-8 вольт. Контроллер телефона отключался от питания и говорил «зарядка не поддерживается». Решил данную проблему кондёром большой емкости(10 000 мкФ) а потом и маленьким аккумулятором от китайского лед фонарика на 4 вольта + пальчиковый никель-кадмиевый аккумулятор.

Потом решил заменить корпус, а то бутылка была довольно шумной, шуму стало немного меньше но ватт не прибавилось, потом двигатель умер после купания. Да и к лучшему… потому, что я узнал, что от старых принтеров можно извлечь неплохой генератор только переменного тока — так называемый шаговый двигатель.

Крыльчатку собрал из CD диска и лопаток из пластиковой бутылки сложенных в двое и склеенных супер клеем.

Стоп кадр для понятия принципа действия турбины, Вода «бьёт» по лопасти, заставляя её вращаться…

Старая разбилась, собрал такую же крыльчатку:

Крыльчатку из CD-диска посадил на вал шаговика. Использование шаговика дало больше ватт нежели коллекторник, кроме того и долговечнее шаговики потому, что у них нет щёток… единственное — шаговик выдавал переменное напряжение и двумя катушками, что есть хорошо, можно суммировать напряжение или суммировать силу тока которую вырабатывала турбина, можно через трансформатор повышать или понижать, как душе угодно. Из одной катушки я мог взять столько же ватт, сколько и давал прошлый вариант.

Данные таковые: ток при КЗ был 0.4-0.45 А на катушке и по 9-10 вольт то есть я мог добыть 15-20 вольт и ток при этом 0.4 А тоесть 6 ватт(в теории)

Фильтр собирал по такой схеме:

Новая крыльчатка добавила несколько милиньютон/метров но обороты убавились немного.

Ах да у шаговиков есть большой недостаток – залипание, то есть на малых оборотах турбина просто вставала (то просто крутилась очень медленно) иногда, когда был слабый напор воды, вообще было невозможно взять ни вата «с крана».

Воды, данная форсунка из щупа, тянула 200 л/ч. Давление в тестируемом кране 1-1.5 кгс/см2(1-1.5 Атм).  Я лично на воду счетчик не имею просто поэкспериментировал и всё.

Потом была ещё одна идея турбины, но тоже не лишенной недостатков:

Гелевая ручка служит передаточным валом. С другой стороны должен быть закреплен вал вашего двигателя.

Сейчас собрал ещё несколько моделей крыльчаток но тестить нет желания/времени.

P.S.  Ах да, чуть не забыл. Ресурс пресной воды на планете ограничен, и составляет только 1% из всего мирового запаса воды. Экономьте воду)
Автор: HWman


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ!

About HWman

Простая самодельная паровая турбина

Header>Паровая турбина. Первые упоминания о паровых двигателях относятся к началу первого века до нашей эры. Относительно простой принцип действия сделал этот паровой двигатель основным для человечества на сотни лет. Попробуем изготовить простейшую модель паровой турбины своими руками.

 

Нам понадобится:

  • Консервная банка. Я взял маленькую от томатной пасты.
  • Жестяные крышки от банок большего диаметра.
  • Жестяная полоска. Ее можно вырезать из боковины банки.
  • Заклепки диаметром 3мм и длинной 7 и 14мм.
  • Винт с гайкой М5.
  • Алюминиевая проволока.
  • Свечка. В место свечи лучше использовать таблетку сухого горючего или спиртовку.


Из крышек вырезаем два кружочка. Один подгоняем под размер банки, которая будет паровым котлом. Второй будет турбиной. Его размер выбираем на свое усмотрение, в зависимости от размера всей конструкции. Длинную заклепку, которая будет форсункой с одной стороны обстучать молотком и уменьшить диаметр до 0.6-0.7мм.

Делаем в крышке две дырки: под форсунку и под заливное отверстие. Заливное отверстие располагаем чуть с боку, чтобы турбина не мешала завернуть винт.

Припаиваем к крышке гайку и форсунку из заклепки. Эти заклепки делают из алюминия, по этому придется использовать либо универсальную паяльную жидкость, либо специальный флюс для пайки алюминия. Я использовал Ф59А.

Припаиваем крышку к банке. Надо заметить, что почти все современные консервные банки изготавливаются с дополнительным полимерным покрытием, по этому все детали перед пайкой необходимо зачистить шкуркой.

Изготавливаем турбину. Для этого делим кружок из жести сперва на 4 части, потом каждую четвертинку на 2 части, и наконец каждую дольку на пополам. Надрезаем дольки примерно до середины радиуса. Загибаем лопатки турбины плоскогубцами. В центр припаиваем головку заклепки.

Держатель турбины выгибаем из жестяной полоски в виде буквы П. Ширина подбирается чуть больше длины двух заклепок.

Впаиваем турбину в держатель так, чтобы она свободно вращалась. В качестве оси берем обрезанный центральный стержень заклепки.

Припаиваем держатель с турбиной к крышке над форсункой. Обязательно проверяем чтобы она не за что не цеплялась.

Варианты подставки могут быть любыми. Самое простое - выгнуть из алюминиевой проволоки.

Турбина готова к запуску. Заливать воду будет гораздо проще, воспользовавшись полиэтиленовым флаконом из под капель от насморка. Не стоит наливать воды больше половины объема нашего котла. В качестве уплотнительной шайбы идеально использовать шайбу, вырезанную из свинцовой оболочки кабеля. Можно использовать кожаную. Если нет ни того ни другого, достаточно взять стандартную и облудить.

Теперь осталось развести огонь и дождаться закипания воды. Пар будет под давлением вырываться из форсунки и крутить турбину.

Вид работающей турбины завораживает. Теперь появилось желание изготовить цивильный настольный вариант. Что-нибудь в стиле стим-панк.

Процесс изготовления и работа паровой турбины на видео.

Электрогенератор – гидротурбина из старой стиральной машины

История гидроэнергетики берет начало от простого водяного колеса, которое нашим предкам пришло в голову установить на порогах реки. Сначала его использовали для мельницы, тем самым облегчив работу жерновов. Позднее люди научились использовать силу воды для самых разных нужд – изготовления бумаги, распиловки бревен, в кузнечном деле и даже для пивоварения. Венцом творения был электрогенератор, который удалось подключить к турбине. Так появились ГЭС, принцип которых используют сегодня и для домашних изобретений, в том числе и в сегодняшней самоделке.
Ее автору удалось собрать ее буквально из старой стиралки, слегка модернизировав и грамотно использовав ресурсы ближайшей речки на его загородном участке. Он утверждает, что живет уже несколько лет без подключения к электрическим сетям, и не платит за электричество ни копейки. Мощности от гидрогенератора хватает чтобы снабдить электричеством не только все электроприборы в доме, но и потянуть работу мастерской с электроинструментами. Как такое возможно? Давайте посмотрим вместе.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины

Принцип работы гидроэлектрогенератора


В данной домашней разработке используется родной корпус стиральной машины. Двигатель перемонтируется в режим генератора, и помещается обратно на свое посадочное место. Колесо Пелтона применяется как движущая турбина, аккумулирующая потоки воды, и передающая кинетическую энергию генератору. Переменный 3-х фазный ток, получаемый на выходе генератора, пропускается через выпрямитель из трех диодных мостов. Постоянный ток подается на зарядку аккумуляторов через контроллер, а от них на инвертор 12V/220V, снова получая переменную частотность.

Материалы, инструменты


Материалы:
  • Старая стиральная машина с инверторным двигателем;
  • Колесо Пелтона;
  • Небольшой отрезок тента;
  • Фанера;
  • Оргстекло или плексиглас;
  • Силикон;
  • Гидроизоляция для пластика - краска или мастика;
  • Саморезы, гайки, шайбы, болты и наждачная бумага.

Инструмент:
  • Дрель с корончатой фрезой, сверлами и насадкой под саморезы;
  • Сабельная пила или электролобзик;
  • Ручной инструмент: гаечные ключи, плоскогубцы, малярный нож и пистолет для силикона.

Собираем гидроэлектрогенератор


Подготовительные демонтажные работы
Для начала необходимо разобрать стиральную машинку, оставив лишь нужные нам детали.
Электрогенератор  гидротурбина из старой стиральной машины
Машинка вертикального типа, поэтому снимаем торцевую крышку с лицевой стороны и демонтируем электронную панель контроля режимов стирки.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Вытаскиваем внешний барабан и демонтируем насос и лишние шланги подводки воды.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Маховик для стирки нам не нужен, как в прочем и внутренняя стальная емкость для белья.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Все что должно остаться – это внешний пластиковый барабан и двигатель на валу.
Электрогенератор  гидротурбина из старой стиральной машины
Как мы можем убедиться, перемонтированный инверторный двигатель уже выдает электричество при вращении вала.
Электрогенератор  гидротурбина из старой стиральной машины
Теперь необходимо разобрать двигатель, оставив на корпусе только вал с подшипниками.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины

Изготовление гидротурбины


Герметизировать наш вал поможет резиновая прокладка, вырезанная из старой камеры. Делаем в ней отверстие посередине, и насаживаем плотно на стержне вала.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Небольшое колесо Пелтона будет осуществлять забор воды. Этому изобретению почти полторы сотни лет, а оно все не теряет актуальности и применяется даже на некоторых ГЭС. Его необходимо закрепить на валу так, чтобы оно могло свободно двигаться и не касалось корпуса.
Электрогенератор  гидротурбина из старой стиральной машины
Размечаем под него отверстие в корпусе для подачи воды, и сверлим его корончатой фрезой.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Лобзиком или сабельной пилой делаем сливное отверстие в форме прямоугольника, и закрываем его на саморезы отрезком водонепронецаемого тента. Должно получиться вот так (фото).
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Далее нужно изготовить заглушку для бака нашей гидротурбины. Делаем ее из куска влагостойкой фанеры, выпиливая лобзиком окружность, равную внутреннему диаметру барабана. В самой заглушке делаем смотровое отверстие для контроля работы агрегата. Которое затем будет закрыто оргстеклом.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Обмазываем торец фанеры силиконом, и насаживаем ее внутрь. Закрепляем ее с помощью саморезов через корпус турбины.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Вырезаем из прорезиненного материала прокладку для оргстекла, и приклеиваем ее на силикон к фанере.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Засверливаем четыре отверстия по сторонам прямоугольника окошка, и с внутренней стороны помещаем в них прижимные болты. На них и будем закреплять оргстекло, чтобы оно было съемным на случай непредвиденных поломок.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Герметизируем стык нашей заглушки с корпусом силиконом.
Электрогенератор  гидротурбина из старой стиральной машины
Для защиты электрической части агрегата, автор установил дополнительный кожух из пластика на край турбины с помощью саморезов. Сам пластиковый корпус прокрасил краской чтобы защитить пластик от растрескивания.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Настала очередь собрать двигатель, установить его на агрегате. Крепим на посадочные болты статор.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Для получения постоянного тока для зарядки аккумуляторов закрепляем планку из трех диодных мостов, по каждому на фазу.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Накрываем двигатель крышкой ротора, и затыкаем лишние сливные отверстия для шлангов, оставшиеся в корпусе.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины

Установка и подключение


Наш гидрогенератор практически готов. Остается закрепить его на рамочном каркасе из сваренных уголков, и приспособить с помощью гидрантов подачу воды. Выходную мощность генератора можно регулировать силой напора, или диаметром отверстия сопла крана, подающего воду непосредственно в саму турбину. Направленный слив также обеспечит возврат воды без вреда для реки.
Электрогенератор  гидротурбина из старой стиральной машины
Закрепить корпус турбины можно на стяжной ремень для закрепления грузов на автомобилях.
Электрогенератор  гидротурбина из старой стиральной машины
Проверяем работу генератора, и замеряем ток и выходное напряжение тестером. Автор заверяет, что при напоре воды на его участке агрегат выдавал 21А при 29V, что равняется 600Вт. При увеличении сопла крана, мощность достигла 900Вт.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрическая схема, предложенная автором данной самоделки, не ограничивается одним лишь генератором. Для планомерного расхода электричества в сети необходимо стабильное напряжение и ток, которые способны выдавать накопительные емкости – аккумуляторы. Инвертируя небольшое напряжение в достаточное для бытового можно организовать подачу и распределение его по домовой разводке к электроприборам. Автор также советует применить электронный контроллер, который показывает степень заряда аккумулятора, потребляемый и выдаваемый ток, температурный режим и т.д.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины
Природные ресурсы, которые в избытке вокруг нас, действительно можно использовать во благо. Нужно всего лишь немного знаний электротехники и старых запчастей, валяющихся без дела на заднем дворе. А в остальном помогут смекалка и находчивость настоящего любителя изобретений, ведь именно за такими людьми движение и развитие технического прогресса.
Электрогенератор  гидротурбина из старой стиральной машины
Электрогенератор  гидротурбина из старой стиральной машины

Смотрите видео


Турбина своими руками: что для этого нужно?

Люди начали использовать пар в качестве движущей силы еще в самом начале нашей эры. Двигатели, которые устроены по этому принципу, становятся частями многих приборов и машин, пригодных для различных нужд как в промышленности, так и дома. Но теперь, благодаря научно-техническому прогрессу, каждый с помощью нехитрых инструментов и материалов (которые есть в любом магазине хозяйственных товаров) может понять, как делается турбина своими руками. Итак, вот какие элементы вам понадобятся:

  1. Жестяная консервная банка и несколько крышек для банок (также из жести).
  2. Неширокая полоска из того же металла.
  3. Несколько заклепок из металла.
  4. Гайка и винт.
  5. Моток алюминиевой проволоки.
  6. Свеча, спиртовка или таблетка сухого горючего.
  7. Плоскогубцы, паяльник, а также флюс, предназначенный для пайки алюминия.турбина своими руками

Сделай сам

Итак, после того как все материалы и инструменты собраны, можно приступать к работе. Прежде всего возьмите две крышки и вырежьте из них круги. Они будут разного размера: один равен по диаметру горлышку банки, которая в будущем изделии станет одной из самых важных частей – паровым котлом; параметры второго выбирайте, исходя из того, какого размера турбину вы хотите получить. Но это только первый этап. Далее будет видно, как изготавливается турбина своими руками.

Теперь нам понадобятся алюминиевые заклепки. Возьмите одну из них (ее размер должен быть равен четырнадцати миллиметрам) и с помощью молотка, обстукивая равномерно со всех сторон, сделайте форсунку. Диаметр полученного изделия будет достигать 0,6 миллиметров. После этого возьмите ту крышку, которая будет закрывать паровой котел, и сделайте в ней пару отверстий: одно для форсунки, другое - заливное. Причем второе нужно сделать как можно ближе к краю, чтобы после не возникло проблем с крепежным болтом. Стоит помнить, что турбина своими руками делается непросто, но в результате получается очень полезное в хозяйстве приспособление.

паровая турбина своими руками

При помощи паяльника соедините с крышкой гайку и форсунку. Во время пайки второй детали следует использовать флюс для алюминия или универсальную паяльную жидкость, например, с маркировкой Ф59А. После этого припаяйте к банке крышку, предварительно выполнив наждачной бумагой очистку поверхностей, которые будут соединены, от полимерного покрытия. Осталось сделать совсем немного, и у вас будет красоваться паровая турбина, своими руками сделанная в домашних условиях.

Далее нужно взять второй круг, из которого мы будем изготавливать собственно турбину. Для этого его нужно разделить сначала на четыре одинаковых сектора, а после каждый из них разметить на две части и повторить эту операцию с деталями. Итак, получилось шестнадцать лопастей. Но они еще не готовы. Каждую из деталей нужно подрезать вдоль до середины радиуса и загнуть с помощью плоскогубцев в одну сторону. В центре данной конструкции будет припаяна головка заклепки. Как видите, турбина своими руками изготавливается хоть и долго, но не так уж сложно.

газовая турбина своими руками

Теперь нужно взять полоску жести. Из нее будет сделан держатель для турбины. Для этого необходимо согнуть этот материал в форму буквы «П». При этом проследите, чтобы ширина детали была равна длине двух заклепок или превышала ее. После этого нужно впаять турбину в держатель таким образом, чтобы ее лопасти могли максимально свободно вращаться, а осью стал основной стержень заклепки. Турбина, своими руками сделанная, почти готова, осталось только выполнить пару простых операций: присоединить друг к другу держатель и паровой котел из банки, а также сделать подставку для всей этой конструкции из алюминиевой проволоки. Внимание: проследите, чтобы лопасти при вращении не цеплялись за другие детали изделия.

Проба 

Итак, вот как пользоваться паровой турбиной. Для начала нужно с помощью полиэтиленового флакона наполнить банку водой до половины. После следует закрыть отверстие в крышке, чтобы ликвидировать утечку пара. Осталось только нагреть воду с помощью одного из вышеперечисленных способов, чтобы простой механизм заработал. Газовая турбина своими руками делается точно так же, только вместо воды нужно будет использовать, как следует из названия, один газ. Но это нужно делать с большой осторожностью и желательно воспользоваться помощью профессионала.

Author:

Отправить ответ

avatar
  Подписаться  
Уведомление о