Импульсный блок питания из сгоревшей лампочки
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.
Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.
Оглавление статьи.
- Вступление.
- Отличие схемы КЛЛ от импульсного БП.
- Какой мощности блок питания можно изготовить из КЛЛ?
- Импульсный трансформатор для блока питания.
- Ёмкость входного фильтра и пульсации напряжения.
- Блок питания мощностю 20 Ватт.
- Блок питания мощностью 100 ватт
- Выпрямитель.
- Как правильно подключить импульсный блок питания к сети?
- Как наладить импульсный блок питания?
- Каково назначение элементов схемы импульсного блока питания?
Вступление.
В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.
В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.
Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.
В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.
Вернуться наверх к меню
Отличие схемы КЛЛ от импульсного БП.
Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.
А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.
Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.
Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.
Вернуться наверх к меню
Какой мощности блок питания можно изготовить из КЛЛ?
Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.
Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.
В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.
Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.
В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.
Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.
Вернуться наверх к меню
Импульсный трансформатор для блока питания.
Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. 🙂 Проверено на практике.
Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки. 🙂
Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.
Вернуться наверх к меню
Ёмкость входного фильтра и пульсации напряжения.
Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.
Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.
Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.
Вернуться наверх к меню
Блок питания мощностью 20 Ватт.
Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.
На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.
Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.
Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!
Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.
Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.
Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.
Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.
На картинке действующая модель БП.
Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС
Вернуться наверх к меню
Блок питания мощностью 100 Ватт.
Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.
Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.
Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.
Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.
Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.
Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.
Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.
Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!
На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.
- Винт М2,5.
- Шайба М2,5.
- Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
- Корпус транзистора.
- Прокладка – отрезок трубки (кембрика).
- Прокладка – слюда, керамика, фторопласт и т.д.
- Радиатор охлаждения.
А это действующий стоваттный импульсный блок питания.
Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)
Вернуться наверх к меню
Выпрямитель.
Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.
Существуют две широко распространённые схемы двухполупериодных выпрямителей.
1. Мостовая схема.
2. Схема с нулевой точкой.
Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.
Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.
Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.
Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.
100 / 5 * 0,4 = 8(Ватт)
Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.
100 / 5 * 0,8 * 2 = 32(Ватт).
Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности. 🙂
В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.
Вернуться наверх к меню
Как правильно подключить импульсный блок питания к сети?
Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.
При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.
На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.
А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.
Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.
Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.
Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.
Вернуться наверх к меню
Как наладить импульсный блок питания?
Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.
Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.
Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.
Если сильно греются транзисторы, то нужно установить их на радиаторы.
Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.
Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.
Вернуться наверх к меню
Каково назначение элементов схемы импульсного блока питания?
R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.
VD1… VD4 – мостовой выпрямитель.
L0, C0 – фильтр питания.
R1, C1, VD2, VD8 – цепь запуска преобразователя.
Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.
R2, C11, C8 – облегчают запуск преобразователя.
R7, R8 – улучшают запирание транзисторов.
R5, R6 – ограничивают ток баз транзисторов.
R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.
VD7, VD6 – защищают транзисторы от обратного напряжения.
TV1 – трансформатор обратной связи.
L5 – балластный дроссель.
C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.
TV2 – импульсный трансформатор.
VD14, VD15 – импульсные диоды.
C9, C10 – конденсаторы фильтра.
Вернуться наверх к меню
Источник http://oldoctober.com/
Импульсный блок питания своими руками: принцип работы, схемы
В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.
Конструктивные особенности и принцип работы
Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:
- Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
- Импульсный принцип.
Рассмотрим, чем отличаются эти два варианта.
БП на основе силового трансформатора
Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.
Упрощенная структурная схема аналогового БПСледующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.
Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.
Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.
Понижающий трансформатор ОСО-0,25 220/12Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.
Импульсные устройства
Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.
Рисунок 3. Структурная схема импульсного блока питанияРассмотрим алгоритм работы такого источника:
- Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
- Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
- На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
- Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.
Пример миниатюрных импульсных БПВ отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.
- Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
- На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.
Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.
Как работает инвертор?
ВЧ модуляцию, можно сделать тремя способами:
- частотно-импульсным;
- фазо-импульсным;
- широтно-импульсным.
На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.
Структурная схема ШИМ-контролера и осциллограммы основных сигналовАлгоритм работы устройства следующий:
Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).
Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.
Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.
В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.
Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.
Сильные и слабые стороны импульсных источников
Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:
- Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
- Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
- Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
- Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
- Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.
К недостаткам импульсной технологии следует отнести:
Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.
Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.
Сфера применения
Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:
- различные виды зарядных устройств; Зарядки и внешние БП
- внешние блоки питания;
- электронный балласт для осветительных приборов;
- БП мониторов, телевизоров и другого электронного оборудования.
Собираем импульсный БП своими руками
Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.
Принципиальная схема импульсного БПОбозначения:
- Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
- Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
- Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
- Транзистор VT1 – KT872A.
- Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
- Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
- Предохранитель FU1 – 0.25А.
Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.
Импульсные источники питания | Электрознайка. Домашний Электромастер.
Здравствуйте уважаемые коллеги!!
Как построить импульсный трансформатор на ферритовом кольце я уже рассказывал в своих уроках здесь. Теперь расскажу как я изготавливаю трансформатор на Ш — образном ферритовом сердечнике. Использую я для этого подходящие по размеру ферриты от старого «советского»оборудования, старых компьютеров, от телевизоров и другой электротехнической аппаратуры, которое у меня в углу валяется «до востребования».
Для ИБП по схеме двухтактного полумостового генератора, напряжение на первичной обмотке трансформатора, согласно схемы составляет 150 вольт, под нагрузкой примем 145 вольт. Вторичная обмотка выполнена по схеме двухполупериодного выпрямления со средней точкой.
Смотреть схему ИБП здесь.
Приведу примеры расчета и изготовления трансформаторов для ИБП небольшой мощности 20 — 50 ватт для этой схемы. Трансформаторы такой мощности я применяю в импульсных блоках питания для своих светильников на светодиодах. Схема трансформатора ниже. Необходимо обратить внимание, чтобы сложенный из двух половинок, Ш — сердечник не имел зазора. Магнитопровод с зазором используется только в однотактных ИБП.
Вот два примера расчета типичного трансформатора для различных нужд. В принципе, все трансформаторы на разные мощности имеют одинаковый способ расчета, почти одинаковые диаметры провода и одинаковые способы намотки. Если вам нужен трансформатор для ИБП мощностью до 30 ватт, то это первый пример расчета. Если нужен ИБП мощностью до 60 ватт, то второй пример.
Первый пример.
Выберем из таблицы ферритовых сердечников №17, Ш — образный сердечник Ш7,5×7,5. Площадь сечения среднего стержня Sк = 56 мм.кв. = 0,56 см.кв.
Окно Sо = 150 мм.кв. Расчетная мощность 200 ватт.
Количество витков на 1 вольт у этого сердечника будет: n = 0,7/Sк = 0,7 / 0,56 = 1,25 витка.
Количество витков в первичной обмотке трансформатора будет: w1 = n х 145 = 1,25 х 145 = 181,25. Примем 182 витка.
При выборе толщины провода для обмоток, я исходил из таблицы «Диаметр провода — ток».
В своем трансформаторе я применил, в первичной обмотке, провод диаметром 0,43 мм. (провод большим диаметром не умещается в окне). Он имеет площадь сечения S = 0.145 мм.кв. Допустимый ток (смотреть в таблице) I = 0,29 A.
Мощность первичной обмотки будет: Р = V x I = 145 х 0,29 = 42 ватта.
Поверх первичной обмотки необходимо расположить обмотку связи. Она должна выдавать напряжение v3 = 6 вольт. Количество витков ее будет: w3 = n x v3 = 1,25 x 6 = 7,5 витка. Примем 7 витков. Диаметр провода 0,3 — 0,4 мм.
Затем мотается вторичная обмотка w2. Количество витков вторичной обмотки зависит от необходимого нам напряжения. Вторичная обмотка, например на 30 вольт, состоит из двух равных полуобмоток, w3-1 и w3-2 (смотреть по схеме).
Ток во вторичной обмотке, с учетом КПД (k=0,95) трансформатора: I = k xР/V = 0,95 x 42 ватта / 30 вольт = 1,33 А ;
Подберем провод под этот ток. Я применил провод, нашедшийся у меня в запасе, диаметром 0,6 мм. Его площадь сечения S = 0,28 мм.кв.
Допустимый ток каждой из двух полуобмоток I = 0,56 А. Так, как эти две вторичные полуобмотки работают вместе, то общий ток равен 1,12 А, что немного отличается от расчетного тока 1,33 А.
Количество витков в каждой полуобмотке для напряжения 30 вольт: w2.1 = w2.2 = n х 30 = 1,25 х 30 = 37,5 вит.
Возьмем по 38 витков в каждой полуобмотке.
Мощность на выходе трансформатора: Рвых = V x I = 30 В х 1,12 А = 33,6 Ватт, что с учетом потерь в проводе и сердечнике, вполне нормально.
Все обмотки: первичная, вторичная и обмотка связи вполне уместились в окне Sо = 150 мм.кв.
Вторичную обмотку можно таким образом рассчитать на любое напряжение и ток, в пределах заданной мощности.
Второй пример.
Теперь поэкспериментируем. Сложим два одинаковых сердечника №17, Ш 7,5 х 7,5 .
При этом площадь поперечного сечения магнитопровода «Sк», увеличится вдвое. Sк = 56 х 2 = 112 мм.кв. или 1,12 см.кв.
Площадь окна останется та же «Sо» = 150 мм.кв. Уменьшится показатель n (число витков на 1 вольт). n = 0,7 / Sк = 0,7 /1,12 = 0,63 вит./вольт.
Отсюда, количество витков в первичной обмотке трансформатора будет:
w1 = n х 145 = 0,63 х 145 = 91,35. Примем 92 витка.
В обмотке обратной связи w3, для 6-ти вольт, будет: w3 = n x v3 = 0,63 х 6 = 3,78 витка. Примем 4 витка.
Напряжение вторичной обмотки примем также как и в первом примере равным 30 вольт.
Количество витков вторичных полуобмоток, каждая по 30 вольт: w2.1 = w2.2 = n х 30 = 0,63 х 30 = 18,9. Примем по 19 витков.
Провод для первичной обмотки я использовал диаметром 0,6 мм. : сечение провода 0,28 мм.кв., ток 0,56 А.
С этим проводом мощность первичной обмотки будет: Р1 = V1 x I = 145 В х 0,56 А = 81 Ватт.
Вторичную обмотку я мотал проводом диаметром 0,9 мм. Сечением 0,636 мм.кв. на ток 1,36 ампера. Для двух полуобмоток ток во вторичной обмотке равен 2,72 ампера.
Мощность вторичной обмотки Р2 = V2 x I = 30 x 2,72 = 81,6 ватт.
Провод диаметром 0,9 мм. немного великоват, подходит с большим запасом, это не плохо.
Провод для обмоток я применяю из расчета 2 А на миллиметр квадратный (так он меньше греется, и падение напряжения на нем будет меньше), хотя все «заводские» трансформаторы мотают из расчета 3 — 3,5 А на мм.кв. и ставят вентилятор для охлаждения обмоток.
Общий вывод из этих расчетов таков:
— при сложении двух одинаковых Ш — образных сердечников увеличивается площадь «Sк» в два раза при той же площади окна «Sо».
— число витков в обмотках (в сравнении с первым вариантом) изменяется.
— первичная обмотка w1 с 182 витков уменьшается до 92 витка;
— вторичная обмотка w2 с 38 витков уменьшается до 19 витков.
Это значит, что в том же окне «Sо», с уменьшением количества витков в обмотках, можно разместить более толстый провод обмоток, то есть увеличить реальную мощность трансформатора в два раза.
Я наматывал такой трансформатор, со сложенными сердечниками № 17, изготавливал под них каркас.
Нужно иметь в виду, что трансформаторы, по первому и второму примеру, можно использовать под меньшую нагрузку, вплоть от 0 ватт. ИБП вполне хорошо и стабильно держат напряжение.
Сравните внешний вид трансформаторов: пример-1, c одним сердечником и пример-2, с двумя сложенными сердечниками. Реальные размеры трансформаторов разнятся незначительно.
Анализ ферритовых сердечников №18 и №19 подобен предыдущим примерам.
Все наши выполненные расчеты — это теоретические прикидки. На самом деле, получить такие мощности от ИБП на трансформаторах этих размеров довольно сложно. Вступают в силу особенности построения схем самих импульсных блоков питания. Схему ИБП смотрите здесь.
Выходное напряжение (а следовательно и выходная мощность) зависят от многих причин:
— емкости сетевого электролитического конденсатора С1,
— емкостей С4 и С5,
— падения мощности в проводах обмоток и в самом ферритовом сердечнике;
— падения мощности на ключевых транзисторах в генераторе и на выходных выпрямительных диодах.
Общий коэффициент полезного действия «k» таких импульсных блоков питания около 85%.
Этот показатель все же лучше, чем у выпрямителя с трансформатором на стальном сердечнике, где k = 60%. При том, что размеры и вес ИБП на феррите существенно меньше.
Порядок сборки ферритового Ш — трансформатора.
Используется готовый или собирается — изготавливается новый каркас под размеры сердечника.
Как изготовить «Каркас для Ш — образного трансформатора» смотрите здесь. Хотя в этой статье и говорится про каркас для трансформатора со стальным сердечником, описание вполне подходит и к нашему случаю.
Каркас нужно поставить на деревянную оправку. Намотка трансформатора производится вручную.
На каркас сначала мотается первичная обмотка. Виток к витку заполняется первый ряд, затем слой тонкой бумаги, лакоткани, далее второй ряд провода и т.д. На начало и конец провода надевается тонкая ПВХ трубочка (можно изоляцию с монтажного провода) для жесткости провода, чтоб не обломился.
Поверх первичной обмотки наносится два слоя бумаги (межобмоточная изоляция), затем нужно намотать витки обмотки связи w3. Обмотка w3 имеет мало витков, а потому ее располагают скраю на каркасе. Затем наносятся витки вторичной обмотки. Здесь желательно поступить таким образом, чтобы витки вторичной обмотки w2 не располагались поверх витков w3. Иначе могут возникнуть сбои в работе импульсного блока питания.
Намотка ведется сразу двумя проводами (две полуобмотки), виток к витку в ряд, затем слой бумаги или скотч и второй ряд двух проводов. ПВХ трубку на концы провода можно не надевать, т.к. провод толстый и ломаться не будет. Готовый каркас снимается с оправки и надевается на ферритовый сердечник. Предварительно проверьте сердечник на отсутствие зазора.
Если каркас туго одевается на сердечник, будьте очень осторожны, феррит очень легко ломается. Сломанный сердечник можно склеить. Я клею клеем ПВА, с последующей просушкой.
Собранный ферритовый трансформатор, для крепости, стягивается по торцу скотчем. Нужно проследить, чтобы торцы половинок сердечника совпали без зазора и сдвига.
Силовой трансформатор на феррите | Электрознайка. Домашний Электромастер.
Силовой трансформатор на феррите
Здравствуйте уважаемые коллеги!!
Чтобы намотать импульсный выходной трансформатор на ферритовом сердечнике на любую мощность, необходимо провести предварительный, прикидочный расчет. Сначала нужно определиться с мощностью, которую необходимо получить на выходе трансформатора.
Обратимся к таблице параметров ферритовых магнитопроводов, в ней указаны размеры, площадь сечения магнитопровода, площадь окна и мощность, которую «теоретически» можно получить от сердечника.
Эту таблицу я «откопал» еще в «советской технической литературе» по электротехнике и не один раз убедился в ее верности.
Ферритовые кольца на разные размеры по позициям №1 — №16 имеют рабочую мощность Рвт, от 9 до 951 и более, ватт. Нетрудно заметить, что начиная с позиции №6, даже незначительное увеличение размеров ферритового кольца, приводит к резкому увеличению «пропускаемой» мощности Р вт.
Кольцо К18,5×11х6,5 (Наруж. диам. х Внутр. диам. х Ширина кольца, в миллиметрах) соответствует мощности 70 ватт.
Кольцо К28×16х9 уже 232 ватта. И так далее…
Начиная с позиции №5 уже можно использовать кольца для изготовления выходного трансформатора в импульсном блоке питания на мощность 10 — 15 ватт. С позиции №7 можно изготовить импульсный блок питания на 25 — 30 ватт.
Количество витков в обмотках ферритового трансформатора (количество витков на один вольт) зависит от поперечного сечения магнитопровода «Sк». Выбор размера того или иного ферритового кольца или Ш — сердечника, для задуманного ИБП, зависит в основном от условия — уместятся ли заявленные количества витков в обмотках, в окне.
Чем больше мощность трансформатора, тем диаметр провода обмоток должен быть выше. Чем меньше поперечное сечение феррита, тем больше число витков в обмотках (выше количество витков, приходящееся на один вольт).
Теоретически, все кольца, начиная с позиции №7, «дадут мощность» свыше 232 ватт, что вполне достаточно для среднемощного, до 200 ватт источника питания. Но пытаться «вымучить» из него 200 ватт бесполезно, площадь окна в 202 мм.кв. для этого очень мала. Витки всех обмоток не влезут в его окно. Чтобы получить мощность 200 ватт, нужно брать больше размер кольца.
Существуют также П — образные ферритовые сердечники (строчный трансформатор в телевизорах с кинескопами).
Исходя из практики, импульсные трансформаторы, выполненные на Ш — образных и П — образных ферритовых сердечниках, имеют те же свойства, что и на ферритовом кольце.
Ш — образный сердечник № 17: поперечное сечение среднего стержня » «Sк»= 56 мм.кв.; площадь окна -«Sо» = 7,5 х 20 = 150 мм.кв…
Ш — образный сердечник № 18 от ИБП компьютера: сечение «Sк» = 8,0 х 12,5 = 100мм.кв. = 1см.кв.; Площадь окна «Sо» = 7,5 х 19 = 142 мм.кв…
Сердечник № 19: «Sк» = 10 х 10 = 100 мм.кв. = 1 см.кв.; «Sо» = 7,5 х 25 = 187 мм.кв…
Из всего перечня ферритовых магнитопроводов, я использовал для построения маломощных импульсных трансформаторов кольца: № 5,№ 6, № 7.
Из Ш — образных сердечников: № 17, № 18, № 19.
Из П — образных, от строчных трансформаторов с «Sк»= 1,1 — 1,3 см.кв.
Основной параметр у кольца, П и Ш — сердечников, это площадь поперечного сечения магнитопровода «Sк». Этот параметр определяет количество витков провода в обмотках. Чем больше площадь «Sк», тем меньше витков в обмотках.
Для определения количества витков в обмотках трансформатора, необходимо определить число витков на 1 вольт, исходя из площади Sк. Для этого я постоянно использую свою простую формулу, полученную эмпирическим путем:
n = 0,7/Sк
где: n — количество витков на 1 вольт для данного сердечника;
0,7 — коэффициент;
Sк — площадь поперечного сечения феррита в см.кв.
Второй основной параметр ферритового сердечника, это площадь окна Sо.
В таблице о ферритах видно — увеличивается площадь окна «Sо», увеличивается объем феррита в сердечнике. Следовательно, запасается больше индуктивной энергии в феррите, увеличивается «пропускаемая» электрическая мощность Рвт.
Увеличить мощность ферритового трансформатора любой конфигурации, можно двумя путями:
1. Взять феррит заведомо больших размеров;
2. Применить складывание однотипных сердечников вместе.
При этом суммарная площадь поперечного сечения сердечника «Sк», будет кратна количеству штук, а общая площадь окна «Sо» остается прежней.
Какой же конфигурации (П, Ш или кольцо) ферритовый сердечник наиболее подходит для построения трансформатора. У каждой формы магнитопровода есть свои особенности.
Например, кольцо:
— обмотки трансформатора покрывают всю поверхность кольца, максимальное потокосцепление магнитного поля катушки и сердечника;
— минимально поле рассеивания электромагнитной энергии;
— максимальна площадь теплового излучения обмоток при нагревании, хороший теплоотвод — естественная вентиляция;
— площадь окна у кольца больше, чем у Ш — образного сердечника, значит при одинаковой площади «Sк» (у кольца и Ш — сердечника), с кольца можно «снять» большую мощность.
Трансформатор на Ш — сердечнике (при одинаковой мощности) более компактен, чем на кольце и П — образном сердечнике. Обмотки на Ш — обр. сердечнике сильно нагреваются, т. к. находятся внутри корпуса трансформатора, требуется обдув вентилятором.
Силовые ферритовые трансформаторы в компьюторных блоках питания выполнены в основном на Ш — образных сердечниках. Разбирая старый ферритовый трансформатор, обратите внимание, есть ли немагнитный зазор в прилегающих плоскостях. Для ферритовых сердечников, применяемых в двухтактных импульсных источниках питания, такой зазор не нужен. Если зазор существует, нужно аккуратно сточить на бруске, наждачной шкурке или мелком напильнике боковые стержни сердечника таким образом, чтобы сохранялась плоскость соприкосновения.
Как устроен блок питания, часть 4
Как я уже сказал, речь сегодня пойдет о силовом трансформаторе, а также об узле, именуемом Снаббер.И если трансформатор наверное знает большинство, то снаббер в основном те, кто занимается блоками питания более плотно.
Весь узел на фото выделен красным, а снаббер я обвел зеленым.
Также его можно увидеть в народном блоке питания. На фото я вычеркнул диод, не имеющий отношения к снабберу.
И в моем самодельном блоке питания. Здесь его схема отличается и об этом я расскажу немного позже.
Схема типового обратноходового блока питания думаю знакома многим, подобные схемы часто встречаются в моих обзорах.
Выделим из нее ту часть, о которой я и буду рассказывать.
В нее входит снаббер, трансформатор, входной конденсатор и высоковольтный транзистор.
Отсечем ту часть, которая не имеет отношения к теме разговора, останется совсем мало деталей, думаю что так будет проще для понимания процессов.
Что же происходит в импульсном блоке питания во время работы.
Сначала открывается силовой ключ, через цепь выделенную красным, течет ток, энергия в это время запасается в магнитопроводе трансформатора.
После закрытия ключа полярность на обмотках трансформатора меняется на противоположную и ток начинает течь в нагрузку.
Но так как трансформатор и выходные цепи неидеальны, то на первичной обмотке возникает выброс напряжения, который начинает течь через снаббер.
Если вы посмотрите внимательно, то увидите, что начала обмоток помеченные точками, одинаково сориентированы по отношению к диодам D1 и D2, потому во время открытого состояния силового ключа эти цепи не работают.
Функция снаббера поглотить паразитный выброс, который возникает в первичной обмотке и тем самым защитить высоковольтный транзистор. У некоторых совсем дешевых блоках питания снаббера нет вообще, и это весьма вредно, так как снижает надежность.
В типовом блоке питания данный участок схемы выглядит так. Номиналы подбираются в зависимости от индуктивности обмотки трансформатора, частоты работы и мощности блока питания. Я не буду рассказывать о методике расчета, это довольно долго, но скажу лишь что здесь не работает принцип — чем больше, тем лучше, цепь должна быть оптимальная для определенных условий.
Некоторые наверное увидели диод в схеме снаббера и подумали — что-то знакомое.
Да, так и есть, ближайший аналог, это цепь защиты транзистора, который коммутирует питание обмотки реле. В данном случае он выполняет похожую функцию, не допускает выброса напряжения на транзисторе при выключении. Кстати если диод в этой схеме заменить стабилитроном, то работать должно лучше.
Так как вариант с диодом неприменим в варианте с трансформатором, то последовательно с ним ставят либо резистор с конденсатором, либо супрессор, как на этой схеме.
Еще одно новое слово — супрессор. Не пугайтесь, супрессор это по сути просто стабилитрон, но если у стабилитрона функция обеспечить стабильное напряжение, то у супрессора акцент сделан на импульсный ток и рассеиваемую мощность, стабильность напряжения в данном случае не так важна.
Выглядит он как обычный диод, при этом бывает двунаправленным, но тогда катод не маркируется. Наиолее распространенные супрессоры серий P6KE и 1.5KE. Первый имеет импульсную мощность 600 Ватт, второй 1500 Ватт. Существуют и более мощные, но нас они не интересуют.
Я немного переверну схему так, чтобы было более понятно как работает эта схема. В подобных схемах чаще применяют супрессоры на напряжение в 200 Вольт, например P6KE200A.
Благодаря этому напряжение на обмотке трансформатора не может быть больше чем 200 Вольт. Напряжение на входном конденсаторе около 310 Вольт.
Получается что на транзисторе напряжение около 510 Вольт. На самом деле напряжение будет немного выше, так как детали неидеальны, а кроме того в сети может быть и более высокое напряжение.
В даташитах к микросхемам серии ТОР часто была показана именно такая схема включения супрессора.
Такая схема имеет более жесткую характеристику ограничения, так как до 200 Вольт не ограничивает совсем, а потом старается обрезать все что выше 200 Вольт. Схема с конденсатором имеет немного другую характеристику ограничения, но на самом деле это не критично.
Для уменьшения мощности, рассеиваемой на супрессоре, параллельно ему можно подключить конденсатор.
Или вообще сделать гибрид из двух схем, где есть все элементы обоих вариантов, такое часто применяется в мощных обратноходовых блоках питания.
Иногда применяется альтернативный вариант защиты транзистора, супрессор включенный параллельно ему. Такой вариант применяется довольно редко, чаще в блоках питания имеющих низкое входное напряжение.
Например такое включение супрессора можно увидеть в РоЕ блоке питания, входное напряжение здесь не 310 Вольт постоянного тока, а всего до 70 Вольт.
Теперь можно перейти к трансформатору.
Трансформатор состоит из магнитопровода и каркаса, иногда конструкция дополняется специальным скобами, которые фиксируют магнитопровод на каркасе.
Чаще всего для них используются Ш-образные магнитопроводы. Если блок питания обратноходовый, каким является подавляющее большинство недорогих маломощных блоков питания, то между половинками магнитопровода должен быть зазор. Зазор делается либо между половинками, либо используется специальный магнитопровод, где центральный керн уже имеет зазор, а этом случае ширина зазора должна быть в два раза больше.
Обычно в качестве материала магнитопровода используется феррит, у фирменных магнитопроводов может быть нанесена маркировка и по даташиту можно узнать его характеристики, у более дешевых магнитопроводом чаще маркировки нет.
Вначале мотаются обмотки трансформатора, а затем на этот магнитопровод устанавливается каркас.
Процесс намотки мелких трансформаторов довольно прост.
Сначала мотаем первичную обмотку.
Затем вторичную, иногда в два и более проводов.
Если есть третья обмотка, чаще всего это обмотка питания ШИМ контроллера, то мотаем и ее.
В целях безопасности изолируем всю конструкцию.
После этого берем подобранный магнитопровод, в данном случае здесь у одной половинки средний керн укорочен.
Собираем всю конструкцию вместе. Магнитопровод чаще всего склеивается, но я обычно дополнительно фиксирую скотчем.
В итоге получаем небольшой аккуратный трансформатор. На фото трансформатор мощностью около 25-30 Ватт.
Этот трансформатор уже имеет мощность до 80-100 Ватт. Мотаются они подобным образом, но с некоторыми отличиями.
У трансформаторов рассчитанных на низкое выходное напряжение и большой ток выходная обмотка может мотаться либо литцендратом, либо шиной.
Величина выбора с первичной обмотке напрямую зависит от правильности намотки трансформатора и если для маломощных трансформаторов это не очень критично, то неправильная намотка мощного трансформатора может привести к печальным последствиям.
Обычно наматывают обмотки в три слоя (если используется три обмотки), первичная, вторичная и вспомогательная.
Но связь между обмотками можно сильно улучшить если вторичную обмотку разместить между двумя половинами первичной.
Кроме того рекомендуется мотать провод не внавал, а виток к витку, равномерно заполняя всю площадь каркаса. Обмотки рассчитанные на большой ток мотать лучше несколькими тонкими проводами, а не одним толстым.
Проблемы, которые могут возникнуть в этом узле:
1. Межвитковое КЗ в случае выхода из строя высоковольтного транзистора.
2. Перегрев трансформатора, последующее резкое уменьшение его индуктивности и выход из строя транзистора инвертора
3. Пробой диода снаббера, крайне редко.
4. Частичный пробой супрессора, например супрессор на 200 Вольт превращается в супрессор на 100 Вольт, ничего не выгорает, но БП не работает.