Бензин электролит или нет: Attention Required! | Cloudflare – Attention Required! | Cloudflare

Содержание

Электролиты и неэлектролиты

1. Электролиты - это вещества, растворы или расплавы которых проводят электрический ток.

2. К электролитам относятся щелочи, растворимые соли и кислоты.

3. В водных растворах электролиты распадаются на ионы.

4. Неэлектролиты - вещества, растворы которых не проводят электрический ток.

5. К неэлектролитам относят простые вещества (металлы и неметаллы), оксиды, большинство органических веществ: углеводороды, спирты, альдегиды, углеводы, простые и сложные эфиры и др.

6. Слабые кислоты: H2S, H2CO3, HF, H2SO3, H2SiO3, органические кислоты

 

Давайте порассуждаем вместе

1. К электролитам относится

1) метанол

2) железо

3) хлорид железа (II)

4) оксид железа (III)

 

Ответ: электролитом является хлорид железа (II) - растворимая соль

2. К электролитам относится

1) фосфор

2) сера

3) глюкоза

4) уксусная кислота

 

Ответ: электролитом является уксксная кислота - т.к. это растворимая кислота.

3. К слабым электролитам не относится

1) соляная кислота

2) сероводород

3) угольная кислота

4) уксусная кислота

 

Ответ: соляная кислота не относится к слабым электролитам, это сильный электролит

4. К сильным электролитам не относится

1) бромоводород

2) хлороводород

3) сероводород

4) серная кислота

 

Ответ: сероводород - это слабый электролит, не относится к сильным электролитам

5. Сильным электролитом является

1) угольная кислота

2) серная кислота

3) сахароза

4) метан

 

Ответ: серная кислота - сильный электролит

6. Не является электролитом

1) поваренная соль

2) щелочь

3) азотная кислота

4) спирт

 

Ответ: спирт не является электролитом

7. К электролитам относится

1) C2H5OH

2) C2H4

3) Ca(OH)2

4) CO

 

Ответ:  Ca(OH)2 - малорастворимое основание, значит относится к электролитам

ЭЛЕКТРОЛИТ - это... Что такое ЭЛЕКТРОЛИТ?

  • электролит — электролит …   Орфографический словарь-справочник

  • ЭЛЕКТРОЛИТ — (греч.). Жидкое тело, разлагаемое при помощи электрического (гальванического) тока. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЭЛЕКТРОЛИТ Жидкость, подверженная разложению посредством гальванического тока.… …   Словарь иностранных слов русского языка

  • электролит — а, м. électrolyte m. < électro + гр. lytos разлагаемый. спец. Химическое вещество (в расплаве или растворе), способное разлагаться на составные части при прохождении через него электрического тока. Электролит аккумулятора. БАС 1. Швыряло… …   Исторический словарь галлицизмов русского языка

  • электролит — Раствор, в котором при прохождении через него электрического тока происходит разложение вещества, которое приводит к появлению электрического тока. Электролит является основой аккумуляторов и батарей. [Гипертекстовый энциклопедический словарь по… …   Справочник технического переводчика

  • ЭЛЕКТРОЛИТ — ЭЛЕКТРОЛИТ, электролита, муж. (от слова электрический и греч. lytos растворенный) (физ.). Раствор какого нибудь вещества, способного разлагаться на составные части при электролизе. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • электролит — сущ., кол во синонимов: 1 • католит (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Электролит — Электролитами называют вещества, растворы и сплавыкоторых с другими веществами электролитически проводят гальваническийток. Признаком электролитической проводимости в отличие от металлическойдолжно считать возможность наблюдать химическое… …   Энциклопедия Брокгауза и Ефрона

  • электролит — – вещество, водный раствор или расплав которого проводит электрический ток. Общая химия : учебник / А. В. Жолнин [1] …   Химические термины

  • ЭЛЕКТРОЛИТ — вещество, водный раствор или расплав которого проводит электрический ток (см.), образующимися в результате электролитической (см.). Этим Э., называемые также (см.) второго рода, отличаются от металлов (проводников первого рода), в которых перенос …   Большая политехническая энциклопедия

  • Электролит — Электролит  вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы, однако само вещество электрический ток не проводит. Примерами электролитов могут служить растворы кислот, солей и оснований.… …   Википедия

  • Электролит - это... Что такое Электролит?

    Электроли́т — вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы, однако само вещество электрический ток не проводит. Примерами электролитов могут служить растворы кислот, солей и оснований. Электролиты — проводники второго рода, вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов и обладающие вследствие этого ионной проводимостью.

    Степень диссоциации

    В растворах некоторых электролитов диссоциирует лишь часть молекул. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации[1].

    Классификация

    Исходя из степени диссоциации все электролиты делятся на две группы

    1. Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO3).
    2. Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты), основания p-, d-, и f- элементов.

    Между этими двумя группами четкой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.

    Использование термина

    В естественных науках

    Термин электролит широко используется в биологии и медицине. Чаще всего подразумевают водный раствор, содержащий те или иные ионы (напр., «всасывание электролитов» в кишечнике).

    В технике

    Слово электролит широко используется в науке и технике, в разных отраслях оно может иметь различающийся смысл.

    В электрохимии

    Многокомпонентный раствор для электроосаждения металлов, а также травления и др. (технический термин, например, электролит золочения).

    В источниках тока

    Электролиты являются важной частью химических источников тока: гальванических элементов и аккумуляторов.[2] Электролит участвует в химических реакциях окисления и восстановления с электродами, благодаря чему возникает ЭДС. В источниках тока электролит может находиться в жидком состоянии (обычно это — водный раствор), или загущённым до состояния геля.

    Электролитический конденсатор

    В электролитических конденсаторах в качестве одной из обкладок используется электролит. В качестве второй обкладки - металлическая фольга (алюминий), или пористый, спечённый из металлических порошков блок (тантал, ниобий). Диэлектриком в таких кондесаторах служит слой оксида самого металла, формируемый химическими методами на поверхности металлической обкладки.

    Конденсаторы данного типа, в отличие от других типов, обладают несколькими отличительными особенностями:

    • Высокая объемная и весовая удельная ёмкость.
    • Требование к полярности подключения в цепях постоянного напряжения. Несоблюдение полярности вызывает бурное вскипание электролита, приводящее к механическому разрушению корпуса конденсатора (взрыву).
    • Значительные утечки и зависимость электрической ёмкости от температуры.
    • Ограниченный сверху диапазон рабочих частот (типовые значения сотни кГц … десятки МГц в зависимости от номинальной ёмкости и технологии).

    Примечания

    1. Степень диссоциации (α) — отношение числа молекул, диссоциировавших на ионы к общему числу молекул растворенного электролита.
    2. ГОСТ 15596-82 Источники тока химические. Термины и определения
    Плазмозамещающие и перфузионные растворы — АТХ код: B05

     

    B05A
    Препараты крови
    B05B
    Растворы для в/в введения
    B05C
    Ирригационные растворы
    B05D
    Растворы для перитонеального диализа
    B05X
    Добавки к растворам для в/в введения
    B05Z

    Ответы@Mail.Ru: горит ли электролит

    Нет, кислота не горит. Горит газ, который выделяется во время заряда батареи, называется водород.

    Но штанов не будет - ТОЧНО

    электролит водный раствор кислоты, ВОДНЫЙ, вода пока не горит, я так знаю по крайней мере )))

    в атмосфере нет, а во фторе горит всё.

    Нет, но при кипении выделяется водород - горючий газ.

    попробуй плесни ожог гарантирован

    Химия и ток

    В современной жизни химические источники тока окружают нас повсюду: это батарейки в фонариках, аккумуляторы в мобильных телефонах, водородные топливные элементы, которые уже используются в некоторых автомобилях. Бурное развитие электрохимических технологий может привести к тому, что уже в ближайшее время вместо машин на бензиновых двигателях нас будут окружать только электромобили, телефоны перестанут быстро разряжаться, а в каждом доме будет свой собственный электрогенератор на топливных элементах. Повышению эффективности электрохимических накопителей и генераторов электроэнергии посвящена одна из совместных программ Уральского федерального университета с Институтом высокотемпературной электрохимии УрО РАН, в партнерстве с которыми мы публикуем эту статью.

    На сегодняшний день существует множество разных типов батареек, среди которых все сложнее ориентироваться. Далеко не каждому очевидно, чем аккумулятор отличается от суперконденсатора и почему водородный топливный элемент можно использовать, не опасаясь нанести вред окружающей среде. В этой статье мы расскажем о том, как для получения электроэнергии используются химические реакции, в чем разница между основными типами современных химических источников тока и какие перспективы открываются перед электрохимической энергетикой.

    Химия как источник электричества

    Сначала разберемся, почему химическую энергию вообще можно использовать для получения электричества. Все дело в том, что при окислительно-восстановительных реакциях происходит перенос электронов между двумя разными ионами. Если две половины химической реакции разнести в пространстве, чтобы окисление и восстановление проходили отдельно друг от друга, то можно сделать так, чтобы электрон, который отрывается от одного иона, не сразу попадал на второй, а сначала прошел по заранее заданному для него пути. Такую реакцию можно использовать как источник электрического тока.

    Впервые эта концепция была реализована еще в XVIII веке итальянским физиологом Луиджи Гальвани. Действие традиционного гальванического элемента основано на реакциях восстановления и окисления металлов с разной активностью. Например, классической ячейкой является гальванический элемент, в котором происходит окисление цинка и восстановление меди. Реакции восстановления и окисления проходят, соответственно, на катоде и аноде. А чтобы ионы меди и цинка не попадали на «чужую территорию», где они могут прореагировать друг с другом непосредственно, между анодом и катодом обычно помещают специальную мембрану. В результате между электродами возникает разность потенциалов. Если соединить электроды, например, с лампочкой, то в получившейся электрической цепи начинает течь ток и лампочка загорается.

    Схема гальванического элемента

    Wikimedia commons

    Помимо материалов анода и катода, важной составляющей химического источника тока является электролит, внутри которого движутся ионы и на границе которого с электродами протекают все электрохимические реакции. При этом электролит не обязательно должен быть жидким — это может быть и полимерный, и керамический материал.

    Основным недостатком гальванического элемента является ограниченное время его работы. Как только реакция пройдет до конца (то есть будет полностью израсходован весь постепенно растворяющийся анод), такой элемент просто перестанет работать.

    Пальчиковые щелочные батарейки


    Возможность перезарядки

    Первым шагом к расширению возможностей химических источников тока стало создание аккумулятора — источника тока, который можно перезаряжать и поэтому использовать многократно. Для этого ученые просто предложили использовать обратимые химические реакции. Полностью разрядив аккумулятор в первый раз, с помощью внешнего источника тока прошедшую в нем реакцию можно запустить в обратном направлении. Это восстановит исходное состояние, так что после перезарядки батарею можно будет использовать заново.

    Автомобильный свинцово-кислотный аккумулятор

    На сегодня создано много различных типов аккумуляторов, которые отличаются типом происходящей в них химической реакции. Наиболее распространенными типами аккумуляторов являются свинцово-кислотные (или просто свинцовые) аккумуляторы, в основе которых лежит реакция окисления-восстановления свинца. Такие устройства обладают довольно длительным сроком службы, а их энергоемкость составляет до 60 ватт-часов на килограмм. Еще более популярными в последнее время являются литий-ионные аккумуляторы, основанные на реакции окисления-восстановления лития. Энергоемкость современных литий-ионных аккумуляторов сейчас превышает 250 ватт-часов на килограмм.

    Литий-ионный аккумулятор для мобильного телефона

    Основными проблемами литий-ионных аккумуляторов являются их небольшая эффективность при отрицательных температурах, быстрое старение и повышенная взрывоопасность. А из-за того, что металлический литий очень активно реагирует с водой с образованием газообразного водорода и при горении аккумулятора выделяется кислород, самовозгорание литий-ионного аккумулятора очень тяжело поддается традиционным способам пожаротушения. Для того чтобы повысить безопасность такого аккумулятора и ускорить время его зарядки, ученые предлагают модифицировать материал катода, воспрепятствовав образованию дендритных литиевых структур, а в электролит добавить вещества, которые блокируют образование взрывоопасных структур, и компоненты, подавляющие возгорание на ранних стадиях.

    Твердый электролит

    В качестве другого менее очевидного способа повышения эффективности и безопасности батарей, химики предложили не ограничиваться в химических источниках тока жидкими электролитами, а создать полностью твердотельный источник тока. В таких устройствах вообще нет жидких компонентов, а есть слоистая структура из твердого анода, твердого катода и твердого же электролита между ними. Электролит при этом одновременно выполняет и функцию мембраны. Носителями заряда в твердом электролите могут быть различные ионы — в зависимости от его состава и тех реакций, которые проходят на аноде и катоде. Но всегда ими являются достаточно маленькие ионы, которые могут относительно свободно перемещаться по кристаллу, например протоны H+, ионы лития Li+ или ионы кислорода O2-.

    Водородные топливные элементы

    Возможность перезарядки и специальные меры безопасности делают аккумуляторы значительно более перспективными источниками тока, чем обычные батарейки, но все равно каждый аккумулятор содержит внутри себя ограниченное количество реагентов, а значит, и ограниченный запас энергии, и каждый раз аккумулятор необходимо заново заряжать для возобновления его работоспособности.

    Чтобы сделать батарейку «бесконечной», в качестве источника энергии можно использовать не те вещества, которые находятся внутри ячейки, а специально прокачиваемое через нее топливо. Лучше всего в качестве такого топлива подойдет вещество, максимально простое по составу, экологически чистое и имеющееся в достатке на Земле.

    Наиболее подходящее вещество такого типа — газообразный водород. Его окисление кислородом воздуха с образованием воды (по реакции 2H2 + O2 → 2H2O) является простой окислительно-восстановительной реакцией, а транспорт электронов между ионами тоже можно использовать в качестве источника тока. Протекающая при этом реакция является своего рода обратной реакцией к реакции электролиза воды (при котором под действием электрического тока вода разлагается на кислород и водород), и впервые такая схема была предложена еще в середине XIX века.

    Но несмотря на то, что схема выглядит довольно простой, создать основанное на этом принципе эффективно работающее устройство — совсем не тривиальная задача. Для этого надо развести в пространстве потоки кислорода и водорода, обеспечить транспорт нужных ионов через электролит и снизить возможные потери энергии на всех этапах работы.

    Принципиальная схема работы водородного топливного элемента

    econet.ru

    Схема работающего водородного топливного элемента очень похожа на схему химического источника тока, но содержит в себе дополнительные каналы для подачи топлива и окислителя и отвода продуктов реакции и избытка поданных газов. Электродами в таком элементе являются пористые проводящие катализаторы. К аноду подается газообразное топливо (водород), а к катоду — окислитель (кислород из воздуха), и на границе каждого из электродов с электролитом проходит своя полуреакция (окисление водорода и восстановление кислорода соответственно). При этом, в зависимости от типа топливного элемента и типа электролита, само образование воды может протекать или в анодном, или в катодном пространстве.

    Водородный топливный элемент Toyota

    Joseph Brent / flickr

    Если электролит является протонпроводящей полимерной или керамической мембраной, раствором кислоты или щелочи, то носителем заряда в электролите являются ионы водорода. В таком случае на аноде молекулярный водород окисляется до ионов водорода, которые проходят через электролит и там реагируют с кислородом. Если же носителем заряда является ион кислорода O2–, как в случае твердооксидного электролита, то на катоде происходит восстановление кислорода до иона, этот ион проходит через электролит и окисляет на аноде водород с образованием воды и свободных электронов.

    Кроме реакции окисления водорода для топливных элементов предложено использовать и другие типы реакций. Например, вместо водорода восстановительным топливом может быть метанол, который кислородом окисляется до углекислого газа и воды.

    Эффективность топливных элементов

    Несмотря на все преимущества водородных топливных элементов (такие как экологичность, практически неограниченный КПД, компактность размеров и высокая энергоемкость), они обладают и рядом недостатков. К ним относятся, в первую очередь, постепенное старение компонентов и сложности при хранении водорода. Именно над тем, как устранить эти недостатки, и работают сегодня ученые.

    Повысить эффективность топливных элементов в настоящее время предлагается за счет изменения состава электролита, свойств электрода-катализатора, и геометрии системы (которая обеспечивает подачу топливных газов в нужную точку и снижает побочные эффекты). Для решения проблемы хранения газообразного водорода используют материалы, содержащие платину, для насыщения которых предлагают использовать, например, графеновые мембраны.

    В результате удается добиться повышения стабильности работы топливного элемента и времени жизни его отдельных компонентов. Сейчас коэффициент преобразования химической энергии в электрическую в таких элементах достигает 80 процентов, а при определенных условиях может быть и еще выше.

    Огромные перспективы водородной энергетики связывают с возможностью объединения топливных элементов в целые батареи, превращая их в электрогенераторы с большой мощностью. Уже сейчас электрогенераторы, работающие на водородных топливных элементах, имеют мощность до нескольких сотен киловатт и используются как источники питания транспортных средств.


    Альтернативные электрохимические накопители

    Помимо классических электрохимических источников тока, в качестве накопителей электроэнергии используют и более необычные системы. Одной из таких систем является суперконденсатор (или ионистор) — устройство, в котором разделение и накопление заряда происходит за счет образования двойного слоя вблизи заряженной поверхности. На границе электрод-электролит в таком устройстве в два слоя выстраиваются ионы разных знаков, так называемый «двойной электрический слой», образуя своеобразный очень тонкий конденсатор. Емкость такого конденсатора, то есть количество накопленного заряда, будет определяться удельной площадью поверхности электродного материала, поэтому в качестве материала для суперконденсаторов выгодно брать пористые материалы с максимальной удельной площадью поверхности.

    Ионисторы являются рекордсменами среди зарядно-разрядных химических источников тока по скорости заряда, что является несомненным преимуществом данного типа устройств. К сожалению, они также являются рекордсменами и по скорости разряда. Энергоплотность ионисторов в восемь раз меньше по сравнению со свинцовыми аккумуляторами и в 25 раз меньше по сравнению с литий-ионными. Классические «двойнослойные» ионисторы не используют электрохимическую реакцию в своей основе, и к ним наиболее точно применим термин «конденсатор». Однако в тех вариантах исполнения ионисторов, в основе которых используется электрохимическая реакция и накопление заряда распространяется в глубину электрода, удается достичь более высоких времен разрядки при сохранении быстрой скорости заряда. Усилия разработчиков суперконденсаторов направлены на создание гибридных с аккумуляторами устройств, сочетающих в себе плюсы суперконденсаторов, в первую очередь высокую скорость заряда, и достоинства аккумуляторов — высокую энергоемкость и длительное время разряда. Представьте себе в ближайшем будущем аккумулятор-ионистор, который будет заряжаться за пару минут и обеспечивать работу ноутбука или смартфона в течение суток или более!

    Несмотря на то, что сейчас плотность энергии суперконденсаторов пока в несколько раз меньше плотности энергии аккумуляторов, их используют в бытовой электронике и для двигателей различных транспортных средств, в том числе и в самых современных разработках.


    * * *

    Таким образом, на сегодня существует большое количество электрохимических устройств, каждое из которых перспективно для своих конкретных приложений. Для повышения эффективности работы этих устройств ученым необходимо решить ряд задач как фундаментального, так и технологического характера. Большинством этих задач в рамках одного из прорывных проектов занимаются в Уральском федеральном университете, поэтому о ближайших планах и перспективах по разработке современных топливных элементов мы попросили рассказать директора Института высокотемпературной электрохимии УрО РАН, профессора кафедры технологии электрохимических производств химико-технологического института Уральского федерального университета Максима Ананьева.

    N + 1: Ожидается ли в ближайшем будущем какая-то альтернатива наиболее популярным сейчас литий-ионным аккумуляторам?

    Максим Ананьев: Современные усилия разработчиков аккумуляторов направлены на замену типа носителя заряда в электролите с лития на натрий, калий, алюминий. В результате замены лития можно будет снизить стоимость аккумулятора, правда при этом пропорционально возрастут массо-габаритные характеристики. Иными словами, при одинаковых электрических характеристиках натрий-ионный аккумулятор будет больше и тяжелее по сравнению с литий-ионным.

    Кроме того, одним из перспективных развивающихся направлений совершенствования аккумуляторов является создание гибридных химических источников энергии, основанных на совмещении металл-ионных аккумуляторов с воздушным электродом, как в топливных элементах. В целом, направление создания гибридных систем, как уже было показано на примере суперконденсаторов, по-видимому, в ближайшей перспективе позволит увидеть на рынке химические источники энергии, обладающие высокими потребительскими характеристиками.

    Уральский федеральный университет совместно с академическими и индустриальными партнерами России и мира сегодня реализует шесть мегапроектов, которые сфокусированы на прорывных направлениях научных исследований. Один из таких проектов — «Перспективные технологии электрохимической энергетики от химического дизайна новых материалов к электрохимическим устройствам нового поколения для сохранения и преобразования энергии».

    Группа ученых стратегической академической единицы (САЕ) Школа естественных наук и математики УрФУ, в которую входит Максим Ананьев, занимается проектированием и разработкой новых материалов и технологий, среди которых — топливные элементы, электролитические ячейки, металлграфеновые аккумуляторы, электрохимические системы аккумулирования электроэнергии и суперконденсаторы.

    Исследования и научная работа ведутся в постоянном взаимодействии с Институтом высокотемпературной электрохимии УрО РАН и при поддержке партнеров.

    Какие топливные элементы разрабатываются сейчас и имеют наибольший потенциал?

    Одними из наиболее перспективных типов топливных элементов являются протонно-керамические элементы. Они обладают преимуществами перед полимерными топливными элементами с протонно-обменной мембраной и твердооксидными элементами, так как могут работать при прямой подаче углеводородного топлива. Это существенно упрощает конструкцию энергоустановки на основе протонно-керамических топливных элементов и систему управления, а следовательно, увеличивает надежность работы. Правда, такой тип топливных элементов на данный момент является исторически менее проработанным, но современные научные исследования позволяют надеяться на высокий потенциал данной технологии в будущем.

    Какими проблемами, связанными с топливными элементами, занимаются сейчас в Уральском федеральном университете?

    Сейчас ученые УрФУ совместно с Институтом высокотемпературной электрохимии (ИВТЭ) Уральского отделения Российской академии наук работают над созданием высокоэффективных электрохимических устройств и автономных генераторов электроэнергии для применений в распределенной энергетике. Создание энергоустановок для распределенной энергетики изначально подразумевает разработку гибридных систем на основе генератора электроэнергии и накопителя, в качестве которых выступают аккумуляторы. При этом топливный элемент работает постоянно, обеспечивая нагрузку в пиковые часы, а в холостом режиме заряжает аккумулятор, который может сам выступать резервом как в случае высокого энергопотребления, так и в случае внештатных ситуаций.

    Наибольших успехов химики УрФУ и ИВТЭ достигли в области разработки твердо-оксидных и протонно-керамических топливных элементов. Начиная с 2016 года на Урале вместе с ГК «Росатом» создается первое в России производство энергоустановок на основе твердо-оксидных топливных элементов. Разработка уральских ученых уже прошла «натурные» испытания на станции катодной защиты газотрубопроводов на экспериментальной площадке ООО «Уралтрансгаз». Энергоустановка с номинальной мощностью 1,5 киловатта отработала более 10 тысяч часов и показала высокий потенциал применения таких устройств.

    В рамках совместной лаборатории УрФУ и ИВТЭ ведутся разработки электрохимических устройств на основе протонпроводящей керамической мембраны. Это позволит в ближайшем будущем снизить рабочие температуры для твердо-оксидных топливных элементов с 900 до 500 градусов Цельсия и отказаться от предварительного риформинга углеводородного топлива, создав, таким образом, экономически эффективные электрохимические генераторы, способные работать в условиях развитой в России инфраструктуры газоснабжения.

    Александр Дубов

    Электролит (аккумуляторный) - это... Что такое Электролит (аккумуляторный)?

    
    Электролит (аккумуляторный)

    Электролит (аккумуляторный)

    Электролит (аккумуляторный) - смесь серной кислоты с дистиллированной водой для заливки в свинцово-кислотную аккумуляторную батарею.

    Электролит для заливки в свинцово-кислотную аккумуляторную батарею готовят из серной кислоты (ГОСТ 667—73) и дистиллированной воды (ГОСТ 6709—72). При подготовке электролита следует пользоваться руководством по эксплуатации автомобиля. Для надежной работы аккумуляторных батарей необходима высокая степень чистоты электролита.

    Нельзя применять техническую серную кислоту и недистиллированную воду, так как при этом ускоряются саморазрядка, сульфатация и разрушение пластин, и уменьшается емкость.

    Смешивать электролит следует в кислотостойкой эбонитовой, фарфоровой или освинцованной посуде.

    Как приготовить электролит

    Инструменты и материалы:


    Приготовление:

    1. Возьмите емкость, устойчивую к действию серной кислоты, залейте туда дистиллированную воду.
    2. Затем в заполненную дистиллированной водой емкость, маленькими порциями влейте серную кислоту, помешивая эбонитовой палочкой.
    3. Ни в коем случае не вливайте дистиллированную воду в серную кислоту, т.к. электролит будет разбрызгиваться с выделение большого количества тепла и в результате чего вы можете получить серьезные ожоги.
    4. Электролит готовится исходя из климатических условий местности. Для районов с умеренным климатом плотность электролиты должна быть — 1,28 г/см, т.е. для его изготовления вам нужно смешать компоненты в пропорции 0,36 л. серной кислоты на 1 л. дистиллированной воды.
    5. В теплых районах плотность электролита должна составлять 1,26 г/см, для подготовки берут 0,33 л. серной кислоты и 1 литр дистиллированной воды.
    6. Готовый электролит оставьте на 15—20 часов в закрытой емкости для его остывания, и чтобы произошло выпадение осадка на дно емкости.

    Wikimedia Foundation. 2010.

    • Электроклуб
    • Электромагнитная плита

    Смотреть что такое "Электролит (аккумуляторный)" в других словарях:

    • Электролит (химия) — Электролит химический термин, обозначающий вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы. Примерами электролитов могут служить кислоты, соли и основания. Электролиты проводники второго рода,… …   Википедия

    • Электролиты — Электролит химический термин, обозначающий вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы. Примерами электролитов могут служить кислоты, соли и основания. Электролиты проводники второго рода,… …   Википедия

    • Secret of Monkey Island — The Secret of Monkey Island Разработчик LucasArts Издатель LucasArts Дизайнер Рон Гилберт Дата выпуска …   Википедия

    • The Secret Of Monkey Island — Разработчик LucasArts Издатель LucasArts Дизайнер Рон Гилберт Дата выпуска …   Википедия

    • ОЖОГИ ПИЩЕВОДА ХИМИЧЕСКИЕ — мед. Химические ожоги пищевода вызывают концентрированные щёлочи и кислоты. Причины. Случайный или преднамеренный (с суицидальной целью) приём внутрь концентрированных кислот (уксусная эссенция, аккумуляторный электролит) или щелочей (нашатырный… …   Справочник по болезням

    • корпус аккумулятора — банка аккумулятора корпус аккумулятора аккумуляторный сосуд — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] корпус Контейнер в котором находятся компоненты… …   Справочник технического переводчика

    Электролит - это... Что такое Электролит?

    Электроли́т — вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы, однако само вещество электрический ток не проводит. Примерами электролитов могут служить растворы кислот, солей и оснований. Электролиты — проводники второго рода, вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов и обладающие вследствие этого ионной проводимостью.

    Степень диссоциации

    В растворах некоторых электролитов диссоциирует лишь часть молекул. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации[1].

    Классификация

    Исходя из степени диссоциации все электролиты делятся на две группы

    1. Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO3).
    2. Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты), основания p-, d-, и f- элементов.

    Между этими двумя группами четкой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом — слабого.

    Использование термина

    В естественных науках

    Термин электролит широко используется в биологии и медицине. Чаще всего подразумевают водный раствор, содержащий те или иные ионы (напр., «всасывание электролитов» в кишечнике).

    В технике

    Слово электролит широко используется в науке и технике, в разных отраслях оно может иметь различающийся смысл.

    В электрохимии

    Многокомпонентный раствор для электроосаждения металлов, а также травления и др. (технический термин, например, электролит золочения).

    В источниках тока

    Электролиты являются важной частью химических источников тока: гальванических элементов и аккумуляторов.[2] Электролит участвует в химических реакциях окисления и восстановления с электродами, благодаря чему возникает ЭДС. В источниках тока электролит может находиться в жидком состоянии (обычно это — водный раствор), или загущённым до состояния геля.

    Электролитический конденсатор

    В электролитических конденсаторах в качестве одной из обкладок используется электролит. В качестве второй обкладки - металлическая фольга (алюминий), или пористый, спечённый из металлических порошков блок (тантал, ниобий). Диэлектриком в таких кондесаторах служит слой оксида самого металла, формируемый химическими методами на поверхности металлической обкладки.

    Конденсаторы данного типа, в отличие от других типов, обладают несколькими отличительными особенностями:

    • Высокая объемная и весовая удельная ёмкость.
    • Требование к полярности подключения в цепях постоянного напряжения. Несоблюдение полярности вызывает бурное вскипание электролита, приводящее к механическому разрушению корпуса конденсатора (взрыву).
    • Значительные утечки и зависимость электрической ёмкости от температуры.
    • Ограниченный сверху диапазон рабочих частот (типовые значения сотни кГц … десятки МГц в зависимости от номинальной ёмкости и технологии).

    Примечания

    1. Степень диссоциации (α) — отношение числа молекул, диссоциировавших на ионы к общему числу молекул растворенного электролита.
    2. ГОСТ 15596-82 Источники тока химические. Термины и определения
    Плазмозамещающие и перфузионные растворы — АТХ код: B05

     

    B05A
    Препараты крови
    B05B
    Растворы для в/в введения
    B05C
    Ирригационные растворы
    B05D
    Растворы для перитонеального диализа
    B05X
    Добавки к растворам для в/в введения
    B05Z

    Author:

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о