Что значит атмосферный двигатель: особенности и характеристики
При изобретении первых автомобильных движков были созданы силовые агрегаты атмосфеного типа. Атмосферные двигатели — это двигатели внутреннего сгорания, использующие воздух из атмосферы для образования топливовоздушной смеси.
Давление воздушного потока, подаваемого на движок, равняется одной атмосфере, по этой причине такие силовые агрегаты получили название атмосферные. Топливная смесь для атмосферного мотора состоит из одной части бензина и четырнадцати частей воздуха.
Многие автовладельцы часто задаются вопросом, что значит атмосферный двигатель. Название возникло благодаря давлению затягиваемого воздуха, соответствующего окружающей среде. Воздух необходим для участия в сжигании топливных смесей в камерах сгорания силовых агрегатов. Поршни затягивают воздушные массы через инжектор в карбюратор, где происходит равномерное смешивание их совпрыскиваемым бензином или дизельным топливом.
Затягивающая способность мотора находится в прямой зависимости от количества оборотов двигателя. Атмосферный двигатель отличается отсутствием специальных устройств в виде компрессоров либо турбин, применяемых для дополнительного принудительного нагнетания воздуха под давлением.
Описание преимуществ силовых агрегатов атмосферного типа
Атмосферные моторы обладают следующими положительными качествами:
- Высокий ресурс пробега.
- Надежность силового агрегата.
- Простота в использовании.
- Ремонтопригодность.
При эксплуатации двигателей атмосферного типа как бензиновых, так и дизелей, наблюдается большая длительность. Размер пробега достигает нескольких сотен тысяч километров. История располагает случаями, когда моторам удавалось выдерживать пробеги более 500 тысяч км, не подвергаясь капитальному ремонту. Некоторые движки продолжают исправно работать даже при сгнивших «родных» кузовах.
Простота конструкции и доступность ремонта атмосферных движков позволяют понизить требования к характеристикам качества бензина, дизельного топлива, моторных масел. Такие силовые агрегаты способны хорошо работать длительное время на топливе низкого качества.
Даже если атмосферник выходит из строя по причине частого использования некачественного бензина, то на его восстановление уйдет намного меньше времени и материальных средств, чем на ремонт турбинованного собрата.
Слабые стороны атмосферников
Силовые агрегаты атмосферного типа имеют некоторые недостатки:
- Большой вес мотора.
- Низкая динамика.
- Мощность ниже, чем у аналогов, оборудованных турбонаддувом.
- Шумная работа мотора.
- Отсутствие способности развивать заданную мощность при эксплуатации в горах, где наблюдается разжижение воздуха.
При эксплуатации моторов имеет место разброс оборотов, что значительно влияет на способность движка всасывать воздушные массы в необходимом количестве. Особенно этот недостаток ощутим при работе на малых оборотах, когда низкая частота каждого поршня не обеспечивает достаточное количествовоздуха в определенное время.
На высоких оборотах подача воздуха встречает сопротивление, вызванное недостаточным размером пропускного сечения воздуховода и воздушного фильтра.
Несмотря на перечисленные недостатки, атмосферники имеют большую популярность среди автомобилестроительных компаний и покупателей благодаря предсказуемости, надежности, простоте и ремонтопригодности силовых агрегатов данного вида.
Особенности турбированных автомобильных двигателей
Перед автовладельцами часто возникает выбор, какую машину приобрести, каким движком она должна быть оборудована, атмосферным либо с турбонаддувом.
Работа турбины, расположенной на силовом агрегате, состоит в увеличении давления воздуха,поступающего в цилиндры, позволяет закачивать увеличенные объемы воздуха для обогащения кислородом топливных смесей.
Увеличение объема воздушных масс способствует увеличению мощности мотора в сравнении с атмосферником почти на 10% при сохранении рабочего объема силового агрегата. Повышенная мощность позволяет увеличить крутящий момент, тем самым улучшая динамику автомобиля.
К преимуществам двигателей, оборудованных турбинами, относится наиболее полное сжигание топлива, создание меньшего шума, что существенно улучшает их экологичность по сравнению с атмосферными моторами.
Преимущества турбированных движков:
- увеличение мощности мотора;
- улучшение динамики автомобиля;
- экологическая безопасность.
Несмотря на очевидные достоинства, двигатели, оснащенные турбонаддувом, имеют и некоторые минусы:
- сложности, возникающие при эксплуатации;
- усиление расхода топлива;
- повышенные требования к качеству бензина, дизельного топлива;
- необходимость использования специальных моторных масел;
- более частые отказы масляного фильтра из-за работы при высокой температуре;
- повышенные требования к маслам и чистоте масляных фильтров;
- ускоренный износ воздушных фильтров.
Только после ознакомления с основными плюсами и минусами атмосферных моторов и движков с турбонаддувом, можно прийти к правильному выбору при покупке нового авто.
Примеры моделей автомобилей, обладающих наиболее мощными атмосферными моторами
Современный автомобильный рынок располагает образцами известных автопроизводителей, оборудованных двигателями без использования принудительного наддува.
Самый мощный атмосферный двигатель имеет автомобиль марки MercedesC 63 FMGCoupeEdition 507, на нем установлен бензиновый атмосферник силой 507 лошадиных сил.
Автомобиль Chevrolet Corvette C7 Stingray, оборудованный бензиновым атмосферным движком, имеет лучшие характеристики.
Сильный внедорожник Jeep Grand Cherokee SRT укомплектован бензиновым двигателем атмосферного вида, обладает высокой мощностью и хорошей динамикой.
Не хуже показывают себя такие модели: Audi RS5, AudiRS4 Avant, Chevrolet Camaro, Mercedes SLK 55 AMG, Porsche Cayenne GTS, Infiniti QX 70, Lexus LS 460, имеющие мощные .
Большой популярностью также пользуются автомобили: Mercedes-Benz OM 602, OM 612, OM 647, BMW M 57, укомплектованные надежными прочными дизельными атмосферниками простой конструкции.
Что значит Атмосферный двигатель автомобиля? Его устройство, как работает
Что такое атмосферный двигатель
Атмосферный двигатель – особый тип конструкции ДВС, который был изобретен еще в конце 19 века, на тот момент он был единственный в своем роде и не имел аналогов. Свое название мотор получил благодаря принципу работы. Основой работы для любого двигателя внутреннего сгорания (ДВС) является воспламенение топлива в цилиндрах. Не каждый знает, что без наличия кислорода невозможно сгорание горючего, поэтому под понятием топлива стоит понимать не только бензин или солярку, а и топливно-воздушную смесь – пропорция топлива и кислорода. Данный тип мотора использует воздух из окружающей среды для воспламенения смеси в цилиндрах. Так взять бензиновый двигатель: данная смесь представляет собой 1 часть бензина и примерно 14 частей воздуха. Смесь в нужных пропорциях создается карбюратором или инжектором:
- Карбюратор — это узел системы питания ДВС, который путем смешивания, подготавливает горючую смесь наиболее оптимального состава и количества и подает ее в цилиндры самого мотора, имеет широкое распространение на разных двигателях. С 80х годов карбюраторы, из-за своей малой эффективности, массово начали вытесняться ижекторами;
- Инжектор или форсунка так же предназначен для приготовления смеси топлива с воздухом из окружающей среды и управляется электромагнитным клапаном или механически. Инжекторные двигатели более экономичны в плане расхода топлива и дают лучшую динамику, вследствие чего карбюраторы начали отходить на задний план.
Понятие «атмосферный» подразумевает под собой то, что непосредственное участие в горении топлива в цилиндрах принимает атмосферное давление. Необходимые пропорции смеси воздуха с топливом формируются в результате работ поршней мотора, которые подобно насосу затягивают наружный воздух из атмосферы через специальный воздуховод. Такой же принцип работы происходит в карбюраторном и инжекторном двигателе, независимо от вида топлива. Автомобили с атмосферными двигателями бывают как бензиновые, так и дизельные. Не смотря на конструктивные особенности дизельных и бензиновых «атмосферников», принцип их работы несет один и тот же смысл.
СПРАВКА. Доступ воздуха, который самостоятельно всасывается двигателем для образования смеси, получается за счет образования пониженного давления в инжекторе или карбюраторе.
Преимущества
Атмосферный двигатель находит широкое распространение из-за большого количества плюсов. К основным преимуществам можно отнести следующее:
- Большой запас ресурса. Практика показывает, что эксплуатация атмосферных двигателей, независимо от вида топлива, может измеряться сотнями тысяч километров пробега без проведения капитального ремонта. Встречаются экземпляры «атмосферников» которые при правильной эксплуатации и своевременном проведении ТО проходили до 500 тысяч километров. Любопытно, что экземпляры атмосферных моторов иногда устанавливали на другие машины, так как кузов первого автомобиля начинал гнить и приходить в негодность;
- Простота конструкции. Атмосферные двигатели лучше поддаются ремонту, нежели моторы с турбиной. Если даже, какой либо элемент узла двигателя приходит в негодность, его можно отремонтировать за меньшую сумму, и качество ремонта в некоторых случаях не будет уступать качеству заводской сборки, механики на СТО более охотно берутся за ремонты атмосферных двигателей, нежели турбированных ;
- Неприхотливость. Бывает, что АЗС в целях экономии разбавляют бензин, тем самым ухудшая его качественные характеристики. Атмосферный двигатель в отличие от турбированного, способен заметно легче переносить эксплуатацию на плохом бензине, двигатель простит вам разовую оплошность при заправке низким топливом.
Не смотря на ненамного больший расход топлива в атмосферном двигателе, в долгосрочном периоде он все же более рациональный и сократит ваши расходы на ремонты и обслуживания, в отличие от турбированного.
Недостатки
Не смотря на все преимущества «атмосферников» в них все же можно найти некие недостатки. Одним из недостатков является вес. По своей конструкции и принципам работы атмосферные двигатели получаются более тяжелыми и объемными, и как мы знаем, что масса автомобиля в целом влияет на средний расход топлива. По мощностям и динамике они заметно уступают двигателям с турбо надувом при одинаковых объемах. Дело в том, что система питания двигателя за счет самостоятельного набора кислорода из окружающей среды не всегда позволяет обеспечивать точные пропорции горючего с воздухом, которые должны равняться 1 к 14 на всех режимах работы. Следовательно, при более низких оборотах мотор засасывает меньше воздуха, а при высоких ему препятствует проходное сечение воздуховодов и сопротивление воздушного фильтра. Эффективность работы в целом снижается, так как во время движения не получается поддерживать узкий диапазон получения горючей смеси, по сравнению с турбированным ДВС.
ВАЖНО! Для более щадящего эксплуатирования мотора рекомендуется плавно наживать на педаль газа и не нагружать двигатель высокими оборотами.
Особенности турбированных двигателей
Тенденция последних лет такова, что большинство автопроизводителей стремятся увеличить мощность двигателя и одновременно уменьшить его расход, переходят на выпуск машин с турбированными двигателями меньшего объема. Такие принципы позволяют производить достаточно мощные и более экологически чистые модели, однако приходится жертвовать долговечностью за счет усложненной конструкции, которая в отличии от атмосферных двигателей чаще приводит к поломкам. Первые 150 тысяч километров пробега для обладателя данного авто с турбиной, будут складываться только положительными сторонами, то тех пор пока он не начнет сталкиваться с ремонтом этого агрегата. Главным отличием мотора оснащенного турбиной является наличие механического компрессора или турбокомпрессора, который специально нагнетает воздух в двигатель под высоким давлением. В отличие от «атмосферников», в моторах с турбиной или компресоором, давление нагнетаемого воздуха составляет от 1,5 до 3 атмосфер. Турбомоторы при одинаковых объемах двигателя с атмосферными двигателями, могут сжигать больше топлива и, следовательно, выдавать намного больше мощности. Первый турбированный двигатель был разработан еще в 1905 году, однако применяться на легковых автомобилях начал только в середине 50 х годов. Принципом его работы является принудительное давление воздуха, которое создает турбина, используя отработанные выхлопные газы. Из-за высокого давления в цилиндры закачивается большее количество воздуха, чем у атмосферного двигателя, вследствие этого увеличение мощности возрастает до 10%. Лучшая динамика происходит за счет высокого крутящего момента. Турбированные моторы более экологически чистые, так как в цилиндрах идет более эффективное сгорание топлива. Не смотря на все плюсы мотора с турбиной, они имеют более сложную конструкцию и нуждаются в большем уходе во время эксплуатации. Поскольку турбина работает при высоких температурах – срок службы масла и масляного фильтра намного меньше, чем у атмосферного, и примерно сокращается два раза. Для нормальной работы двигателя, ему необходимо исключительно высокое качество бензина или солярки, заправка топливом сомнительного качества сразу даст о себе знать и опустошит ваш кошелек во время ремонта. Что касается выбора масла и масляного фильтра, то они ни в коем случае также не должны уступать по качеству.
ВНИМАНИЕ! После завершения движения, машины, оснащенные турбированным двигателем нельзя сразу глушить, автомобиль должен некоторое время поработать в холостом режиме, для нормализации давления в системе.
Примеры моделей авто с наиболее мощными атмосферными двигателями
Современный автомобильный рынок, благодаря такому понятию как конкурентоспособность, не останавливается на достигнутом, и всегда совершенствуется, многие автомобильные компании могут похвастаться моделями с превосходной динамикой атмосферных двигателей. Среди лидеров по мощности «атмосферников» можно выделить следующие модели:
- Автомобиль марки Mercedes C63 FMG Coupe Edition 507, на котором установлен бензиновый атмосферный двигатель силой 507 лошадиных сил;
- Американский автомобиль Chevrolet Corvette C7 Stingray, оснащен бензиновым движком с высокими характеристиками;
- Мощный внедорожник Jeep Grand Cherokee SRT, представляет собой комплектацию бензинового двигателя высокими мощностями и непревзойдённой динамикой;
К автомобилям не намного уступающим по мощностям так же можно отнести такие модели как: Chevrolet Camaro, Lexus LS 460, Porsche Cayenne GTS, Audi RS5, Mercedes SLK 55 AMG.
Что касается дизельных моделей, то лидерами являются следующие марки: Mercedes-Bez OM 602, OM 647, BMW M 57. Двигатели данных автомобилей показывают надежность и простоту конструкции.
При покупке автомобиля все же в первую очередь нужно обращать на его «сердце». Если вы предпочитаете хорошую динамику, меньший расход то ваш выбор должен пасть на турбо мотор. Однако если вы отдаете предпочтение долговечности, то без колебаний совести следует выбирать атмосферный двигатель.
Атмосферный двигатель автомобиля — что это такое
Большинство людей, которые хотя бы что-то слышали о «начинке» машины, держат на слуху такие слова, как «дизельный двигатель», «двигатель с турбинной» и некоторые другие термины. Существует еще и атмосферный двигатель. Но что же это за такое чудо техники? Нужно разобраться, ведь все достаточно просто.
Что такое атмосферный двигатель и в чем его особенность работы?
Этот двигатель был чуть ли не первым творением человека в этом направлении. Свое название этот мотор получил благодаря принципу работы. Данный двигатель использует воздух из окружающей нас атмосферы для сжигания двигательных смесей, формирование которых происходит после того, как воздух попадает в поршень. Следующий этап работы атмосферного двигателя происходит смешение воздуха с топливом (бензином или дизельным горючим). Основываясь на этих фактах, вполне закономерным будет вывод о том, что этот двигатель – самый простой по конструкторским решениям. Следует отметить, что при современном производстве такого двигателя используется турбина, которая делает топливную смесь более сбалансированной.
Эта разновидность двигателей обладает рядом особенностей, учитывать которые при эксплуатации нужно обязательно. Основной особенностью является необходимость правильного просчета питания, то есть нужно брать во внимание соотношение между атмосферным воздухом и топливными жидкостями. Проделывать подобный расчет нужно так, чтобы учитывался оптимальный тип и горючего, и воздуха. Если движок был сделан с соблюдением всех необходимых норм, то соотношение в смесях для этого атмосферного движка будет равно примерно 1:14. Имеет смысл упомянуть о том, что данное соотношение одинаково для всех ДВС. Потому нужно брать во внимание оптимальную пропорцию вышеперечисленных веществ при конструировании и использовании подобной разновидности систем.
Чем грешит конструкция атмосферного двигателя?
Использовать атмосферный двигатель становится неудобно с того момента, когда возникает осуществление оборотов с разной интенсивностью. Это может стать причиной резкого изменения способности втягивать воздух из атмосферы, от чего необходимый баланс один к четырнадцати просто пропадает. Если двигатель работает на малых оборотах, то он не сможет втянуть необходимый объем воздуха. Ведь вращательные движения элементов в цилиндре и их частота не обеспечат достаточных сил для получения необходимого объема этого компонента системы. Через определенное время сбои в работе двигателя заметит водитель, после чего систему придется ремонтировать.
Атмосферные двигатели пользуются особой популярностью среди производителей автомобилей и их потребителей. Некоторое автолюбители сами ставят в свое транспортное средство такой движок, не обращая внимания на возможное появление проблемы с потреблением воздуха. Хорошо, что усилиями инженеров данная проблема была сведена к минимуму. К тому же, атмосферные моторы значительно превосходят остальные виды моторов по надежности, по показателям конструкции питания, по легкости проведения разных видов ремонтных работ. Также возможные неисправности атмосферного двигателя достаточно легко предсказать.
Как увеличить мощность атмосферного двигателя и чем это обернется?
Тех водителей, которые установили в свои машины атмосферный двигатель, может интересовать вопрос увеличения показателя мощности системы. При заводской установке такого мотора используется несколько приемов, которые способствуют увеличению мощности. Производители могут:
— увеличить объем цилиндра;
— ставят более современные и улучшенные воздушные фильтры;
Со временем стало понятно, что при правильном проведении процедуры усовершенствования атмосферного мотора, мощность устройства увеличится примерно на 30%, а то и больше. Но часто случается, что и такого результата маловато. Тогда специалисты рекомендуют ставить один или несколько механических нагнетателей. Опытные автовладельцы именно так экспериментируют со своими машинами.
Прежде, чем увеличивать мощность атмосферного движка разными способами, нужно быть готовым к увеличенному потреблению горючего. Особенно это будет заметно на трассе, где водитель выжимает из автомобиля больше, нежели на городской дороге. Также стоит помнить, что на высокой скорости тормоза могут не справляться со своей прямой задачей. Потому и ее нужно обязательно модернизировать. Посему большинство профессиональных автомехаников не рекомендуют проводить такие изменения в конструкции своего автомобиля без получения предварительной консультации или профессиональной помощи.
Устанавливать или не устанавливать атмосферный двигатель в свой автомобиль – решать Вам. Нужно тщательно взвесить все плюсы и минусы, а уже потом принимать решение.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
Что такое атмосферный двигатель Не всем владельцам авто понятно, что значит атмосферный двигатель автомобиля. Это бензиновые моторы классической конструкции, которые нагнетают воздух из окружающего пространства при помощи поршней карбюратора. При равномерном смешивании кислорода с распыленными частицами бензина образуются топливные смеси. Они используются для сжигания в камере сгорания бензинового двигателя. Принцип действия атмосферного двигателя:
Эффект засасывания воздушных масс возникает, благодаря созданию разряженной атмосферы в полости впускного коллектора. Принцип работы Основной принцип любых двигателей внутреннего сгорания заключается в воспламенении топлива в специальных камерах, благодаря чему в действие приводятся поршни, а далее и последующие узлы автомобиля. В качестве воспламеняющейся жидкости зачастую выступает бензин разнообразных марок либо дизель, но под топливом также стоит понимать и смесь бензина либо дизеля с воздухом. Это является главным условием воспламенения в моторе, так как без достаточного количества кислорода этот процесс невозможен. С появление силовых агрегатов, оснащенных турбокомпрессором, многие водители стали отдавать предпочтение турбированным транспортным средствам. Однако, существует немало автомобилистов, которые при вопросе, какой двигатель лучше атмосферный или турбированный, выбирают привычный классический вариант, основываясь на следующих преимуществах: «Атмосферник» отличают следующие достоинства:
О надёжности атмосферного двигателя красноречиво свидетельствуют цифры. Качественные моторы позволяют автомобилю проходить до 500 тыс. километров. В истории развития автомобилестроения известны случаи, когда мотор переставляли из устаревшей машины в новую, и он продолжал исправно работать на протяжении ещё многих лет. Атмосферные двигатели внутреннего сгорания отличаются наиболее длительным пробегом. Известны случаи, когда машины с установленными атмосферниками, работают без капитального ремонта на протяжении пути, более 500 тысяч километров. Единственное условие – своевременный уход и регулярная замена моторного масла с фильтрами. Их детали и узлы устойчивы против износа. Надежный атмосферный мотор обладает повышенным моторесурсом, продолжает работать даже после неоднократных замен кузова автомобиля. Благодаря безотказной работе атмосферного мотора и простоте его эксплуатации, он неприхотлив к качеству топлива и смазочных материалов. При регулярном использовании бензина пониженного качества такие двигатели, если и выходят из строя, быстрее восстанавливают свою работоспособность. Основное требование к моторному маслу – это обеспечение необходимого уровня. Замена смазочной жидкости должна проводиться каждые 15 – 20 000 км. При выборе наиболее подходящей марки моторного масла для атмосферного двигателя рекомендуется отдавать предпочтение синтетике или полусинтетике. Интересно: В отличие от турбонаддувного мотора, здесь можно заливать и минеральные масла, если не получилось приобрести более качественные смазочные материалы. Конструкция «атмосферника» такова, что с его ремонтом или профилактикой может справиться не только профессионал, но и грамотный автолюбитель. Агрегат можно разобрать до последней детали и собрать обратно — конструкция позволяет сделать это без особых затрат. Нередки случаи, когда при ремонте агрегата используются «неродные» детали и комплектующие, произведённые другими производителями. Соответственно, и стоимость ремонта такого двигателя обходится дешевле. Атмосферные двигатели внутреннего сгорания обладают некоторыми недостатками:
Впрочем, на этом перечень «минусов» исчерпывается. Атмосферные ДВС надёжны, просты и долговечны, но при этом не созданы для больших нагрузок и высоких оборотов. Примеры транспортных средств с мощными атмосферными двигателямиНа современном авторынке представлены автомобили с атмосферниками, выпущенные под известными брендами:
Атмосферный двигатель работает предсказуемо, что для многих автомобилистов является несомненным преимуществом. Решить для себя, какой из вариантов подойдёт больше, стоит исходя из собственных предпочтений. Если в приоритете надёжность, лёгкость в эксплуатации и обслуживании, лучше остановить свой взгляд на моторе атмосферного типа, но если на первом месте показатели динамики, то выбор очевиден. Кстати, усилиями умельцев, практикующих тюнинг, на атмосферные двигатели также устанавливаются турбины. Сделать это непросто и требует специальных навыков, но на практике вполне применимо. Поскольку устройство не лепится к мотору наобум, предполагаются расчёты скорости и объёма поступающего воздуха. Самостоятельно такие работы лучше не выполнять, потому что успешно справиться с задачей смогут только виртуозы своего дела. Источники: drivertip.ru, auto.rambler.ru, fastmb.ru, motoran.ru. |
Атмосферный двигатель: что это такое?
В списке различных характеристик двигателей всегда присутствует деление силовых агрегатов на так называемые атмосферные и моторы с наддувом. Наддувными или атмосферными могут быть как бензиновые, так и дизельные силовые агрегаты. Необходимо добавить, что современные дизельные двигатели на автомобилях практически всегда являются турбированными (турбодизель). Далее мы рассмотрим, что такое атмосферный двигатель и чем он отличается от мотора с наддувом, а также о преимуществах и недостатках атмосферных двигателей.
Принцип работы атмосферного мотора
Как известно, в основе работы любого ДВС лежит сгорание топлива в цилиндрах. Необходимо добавить, что под топливом стоит понимать не только чистый бензин для бензиновых моторов или дизтопливо (солярку) для дизельных двигателей, а топливно-воздушную смесь. Данная смесь (на примере бензинового мотора) представляет собой 1 часть бензина и около 14 частей воздуха, т.е. имеет соотношение 1:14,7. За приготовление такой смеси отвечает карбюратор или инжектор, зависимо от системы питания двигателя.
Атмосферный двигатель является таким типом мотора, который первым был создан в начале эпохи двигателестроения. Само понятие «атмосферный» основывается на том, что естественное атмосферное давление принимает непосредственное участие в том процессе, под которым следует понимать образование топливно-воздушной смеси и ее последующее сгорание в цилиндрах двигателя. Смесь основного вида топлива (зависимо от типа двигателя) и воздуха в атмосферных агрегатах образуется в результате того, что поршни мотора работают подобно насосу, затягивая наружный воздух из атмосферы через специальный воздуховод. По такому принципу работает карбюраторный мотор, бензиновый двигатель с инжектором и дизельный атмосферный агрегат. Главные отличия заключаются только в общих принципах реализации систем смесеобразования и последующей подачи в цилиндры двигателя.
Что касается турбомоторов, главным их отличием от атмосферного агрегата является наличие механического компрессора или турбокомпрессора, а также комплексного сочетания таких решений, которые специально нагнетают воздух в двигатель под высоким давлением. В отличие от двигателя, который работает при обычном атмосферном давлении, в моторах с турбиной или компрессором среднее давление наддувочного воздуха составляет от 1.5 до 3 атмосферных давлений. Результатом становится то, что при одинаковом рабочем объеме турбомотор может сжечь больше топлива и выдает намного больше мощности сравнительно с атмосферным.
Преимущества и недостатки атмосферного двигателя
Атмосферный бензиновый двигатель сегодня является наиболее популярным и доступным по цене мотором, который устанавливается на подавляющее большинство автомобилей. Что касается дизелей, то современные моторы данного типа на легковых авто практически всегда оснащаются турбонаддувом.
Плюсы атмосферных ДВС
Главной отличительной особенностью атмосферных двигателей является относительная простота конструкции моторов данного типа. Также стоит выделить больший моторесурс атмосферных бензиновых и дизельных ДВС сравнительно с турбодвигателями. На практике средний срок эксплуатации «атмосферников» в обычных режимах (при условии качественного и своевременного обслуживания) может составлять около 400 — 500 тысяч пройденных километров до первого капитального ремонта. Для турбированных агрегатов ремонт может понадобиться уже через 200-250 тыс. километров.
Атмосферные двигатели проще обслуживать и эксплуатировать, так как простая конструкция данного типа двигателя менее требовательна к качеству горючего и моторного масла. Атмосферные моторы лучше переносят случайную заправку бензином или соляркой низкого качества. Также отмечается высокая ремонтопригодность атмосферных двигателей. Такие двигатели меньше нагружены сравнительно с ДВС, которые оборудованы механическими нагнетателями или турбокомпрессорами.
Минусы атмосферников
При всех очевидных преимуществах атмосферный мотор не лишен определенных недостатков. Такие двигатели тяжелее и больше по размерам, по мощности, показателю крутящего момента и динамике разгона атмосферные агрегаты явно проигрывают ДВС с наддувом.
Дело в том, что схема питания атмосферника за счет самостоятельного забора наружного воздуха не позволяет обеспечить оптимальное соотношение топлива и воздуха 1:14 на всех режимах работы двигателя. Другими словами, при низких оборотах мотор засасывает меньше воздуха, а на высоких оборотах эффективному забору воздуха препятствует проходное сечение воздуховодов, сопротивление воздушного фильтра и т.д. Результатом становится то, что на «низах» атмосферник еще не тянет, а на «верхах» уже не тянет. Эффективность работы агрегата на таких режимах заметно снижается, атмосферный мотор обеспечивает наилучшую отдачу в более узком диапазоне сравнительно с турбированными ДВС.
Список самых надежных бензиновых и дизельных моторов: 4-х цилиндровые силовые агрегаты, рядные 6-ти цилиндровые ДВС и V-образные силовые установки. Рейтинг.
Особенности эксплуатации авто: как правильно заглушить двигатель и можно ли глушить при работающем вентиляторе. Почему нельзя сразу заглушить турбомотор.
Увеличение мощности атмосферного и турбированного двигателя. Глубокий или поверхностный тюнинг ДВС. Модификация впускной и выпускной системы. Прошивка ЭБУ.
Что означает понятие объем двигателя. Определение рабочего объема мотора. Классы авто в зависимости от объема ДВС, плюсы и минусы большого объема двигателя.
Двигатель семейства FSI: отличия, особенности, плюсы и минусы силового агрегата данного типа. Распространенные проблемы двигателей FSI, обслуживание мотора.
Что представляет собой двигатель с наддувом и чем отличается от атмосферного. Основные преимущества и недостатки турбированных ДВС. Какой мотор выбрать.
Как говорилось в советской кинокомедии «Берегись автомобиля»: «Каждый, у кого нет машины, мечтает еe купить. И каждый, у кого есть машина, мечтает еe продать».
Со времени выхода фильма прошло больше пятидесяти лет, машины стали во много раз сложнее в техническом плане, модельный ряд расширился на несколько порядков. Но личный автомобиль — это по-прежнему серьeзная покупка для семьи, и никто не хочет прогадать с выбором.
Итак, у вас на руках заветная сумма, вы уже определились с маркой и моделью будущего автомобиля. И тут встаeт важный вопрос: с каким двигателем брать машину? Если вопрос о выборе дизельного или бензинового двигателя для вашего автомобиля решeн в пользу последнего, возникает ещe одна дилемма: атмосферный или с турбонаддувом.
В нашей стране большинство популярных моделей, будь то бюджетные седаны или сверхпопулярные кроссоверы, предлагаются как с турбированными, так и с атмосферными моторами. При этом, чем выше класс автомобиля и его цена, тем шире линейка именно турбированных агрегатов. Это общемировая тенденция: турбомоторы постепенно вытесняют атмосферные двигатели.
Прежде чем сделать выбор, стоит разобраться в главных отличиях атмосферных и турбированных силовых агрегатов, а также выявить их сильные и слабые стороны.
Как это работает
Основное отличие двух моторов заключается в способе подачи воздуха в цилиндры. В атмосферном двигателе воздух идeт под действием впуска разрежения, который создаeтся на такте, — поршень просто опускается и втягивает воздух. В турбированном моторе работает принудительный наддув — в цилиндры нагнетается больше воздуха с помощью турбокомпрессора.
По сути, турбированный двигатель является модернизацией своего предшественника — классического атмосферного мотора. Основная цель этого изобретения — увеличение мощности без увеличения объeма цилиндров. Турбированный бензиновый двигатель позволяет получить в камерах сгорания более высокую степень сжатия. Благодаря тому, что воздух подаeтся в камеры сгорания под давлением, достигается более полное сгорание топливно-воздушной смеси.
Турбина состоит из двух частей: ротора и компрессора. Двигатель в процессе работы производит выхлопные газы. Эти раскалeнные газы, поступая под давлением в ротор, раскручивают турбонагнетатель, воздействуя на лопатки турбины. Только после этого они поступают в глушитель. Вал ротора, вращаясь, приводит в действие компрессор, который нагнетает воздух в камеры сгорания, образуя дополнительную степень сжатия.
Воспользуемся простым примером для иллюстрации: если объeм мотора составляет 1,6 литра, то мощность классического атмосферника не превысит 100-110 л.с. В свою очередь, турбированный двигатель при том же объeме сможет выдать до 180 л.с.
Кстати, турбированные двигатели имеют свою небольшую классификацию.
- Механический нагнетатель. На впуске стоит воздушный насос — компрессор, который приводится в движение от коленчатого вала мотора.
- Турбокомпрессор, который использует энергию выхлопных газов. Принципы его работы мы рассмотрели выше.
Немного истории
Готтлиб Даймлер, один из создателей первого двигателя внутреннего сгорания, экспериментировал с нагнетателем, приводимым от коленвала, ещe в 1885 году. Несколькими годами позже Луи Рено — отец одноимeнной марки автомобилей — получил патент на аналогичную конструкцию для ДВС в 1902-м. Причeм само устройство для промышленного применения братья Рутс изобрели ещe в 1859-м.
Примерно тогда же опыты с турбиной, работающей от выхлопных газов, ставил швейцарец Альфред Бюши. Именно ему приписывают создание турбонаддува, функционирующего по такому принципу, в 1905 году. Правда, установить истинного первого изобретателя сейчас сложно, ведь Бюши лишь получил патент.
Мировую же известность механическим нагнетателям принесла компания Mercedes-Benz, которая стала устанавливать наддувные компрессоры в конце 20-х годов сначала на гоночные, а начиная с 30-х и на серийные машины.
Из Германии мода на наддувные машины перекинулась на Голливуд, а оттуда на весь мир. Золотой век немецких «компрессоров» закончился одновременно с началом Второй мировой войны. Основное применение компрессоров в военное время пришлось на авиацию: наддув использовался для компенсации недостатка кислорода на больших высотах.
Сразу после Второй мировой войны использование компрессоров продолжилось в основном на моторах Формулы-1. Турбонаддува на гражданских машинах автопроизводители побаивались из-за детонации возросшего давления и температуры. Технологии производства подшипников оставляли желать лучшего, охлаждение и смазка тоже была малоэффективной, из-за этого турбины быстро приходили в негодность.
Окончательно и бесповоротно на путь «турбинификации» мировые производители встали после топливного кризиса конца 70-х.
Победа за турбокомпрессором?
Не углубляясь в технические подробности, скажем, что механические нагнетатели можно считать частью эволюционного пути, а массовое распространение в итоге получили турбокомпрессоры. Для раскрутки нагнетателя требуется мощность с вала двигателя, турбина же раскручивается просто за счeт выхлопных газов. Первый путь технически сложнее и дороже в массовом производстве.
Тем не менее механические компрессоры до сих пор устанавливают! С одной стороны, это премиальные модели британских Jaguar и Land Rover, некоторые двигатели у Mercedes, а с другой — традиционные масл-кары в духе Dodge Challenger Hellcat, которые продолжают специфически «подвизгивать» именно из-за своего механического нагнетателя.
Главное преимущество этой конструкции — приводной компрессор любой конструкции, будучи привязанным к коленвалу, не имеет инерционности. Связь «по педали» с ним прямая, и разгон остаeтся ровным практически во всeм диапазоне.
Как говорится, каждому своe. Но вернeмся к массовым автомобилям.
Преимущества
Если на рынке продаются оба вида двигателей, значит, у каждого есть ряд неоспоримых преимуществ. Рассмотрим их.
Атмосферный двигатель:
- проще в обслуживании;
- имеет более высокий ресурс;
- меньший расход масла;
- невысокие требования к качеству топлива и масла.
Турбированный двигатель:
- высокая мощность и увеличенный крутящий момент при равных объeмах двигателя;
- меньший расход топлива.
Недостатки
Равно как плюсы, у каждого из двух типов двигателей есть свои недостатки.
Атмосферный двигатель:
- имеет большой вес;
- при одинаковом объeме с турбомотором мощность ниже;
- сниженная динамика — в сравнении с турбомотором того же объeма;
- сложности при езде в горах.
Большинство минусов атмосферного двигателя всплывают при сравнении с турбированными агрегатами. Отдельно стоит сказать о последнем пункте: воздух в горах слишком разреженный, его количества не хватает для стабильной работы мотора, поэтому двигатель попросту «задыхается».
Турбированный двигатель:
- высокие требования к качеству смазки и топлива;
- дорогостоящий ремонт;
- долгий прогрев зимой;
- меньший интервал замены масла.
Трудности выбора
Автолюбителям, которые сомневаются, какой двигатель лучше и выгоднее, однозначного ответа дать не получится. Например, ценителям мощности и динамики имеет смысл присмотреться к турбированному мотору. Однако он же влечeт за собой значительные денежные траты на приобретение бензина и масла высокого качества.
Атмосферный двигатель примечателен своей простотой и неприхотливостью, он прекрасно может служить не одно десятилетие, кроме того, его работоспособность сможет поддержать даже человек с невысоким достатком.
Какое масло нужно турбомоторам, а какое — атмосферным?
У турбомотора наибольшая отдача, то есть максимум выработки тепла приходится на диапазон оборотов в районе 3000-4000 об/мин, когда турбина подаeт повышенное количество воздуха в цилиндры. После того как поток выхлопных газов станет достаточным для полноценной работы турбины, происходит скачок вырабатываемой энергии, сопровождаемый скачком температуры.
Моторное масло в таких условиях обязано сохранять свои свойства как при низких, так и при повышенных температурах. В случае турбированного двигателя это особенно важно, поскольку ось, на которой установлены турбинное и насосное колeса турбонаддува, работает в подшипниках скольжения. В случае если смазочный материал не обеспечит необходимую защиту данного узла, турбина может преждевременно выйти из строя, не выработав свой ресурс, который обычно составляет 30–70% ресурса двигателя.
Для машин с турбокомпрессорами лучше всего подходят синтетические масла, так как они лучше противостоят окислению по сравнению с минеральными и полусинтетическими. К тому же их вязкость в меньшей степени зависит от изменений температуры, что необходимо для обеспечения защиты подшипников турбины на всех режимах работы двигателя.
Что касается самих характеристик вязкости моторного масла, то турбированные моторы «предпочитают» всесезонные масла с низкотемпературным показателем вязкости SAE 0W и высокотемпературным SAE от 20 до 40. Моторные масла с низким показателем высокотемпературной вязкости следует выбирать для повышения топливной экономичности, высокие показатели вязкости — для лучшей защиты двигателя и турбины. В любом случае, подбор смазочного материала следует проводить в полном соответствии с руководством по эксплуатации конкретного автомобиля.
Кроме того, есть пара важных нюансов относительно использования автомобилей с турбированными двигателями:
важно постоянно следить за состоянием масла, меняя его с периодичностью, рекомендованной производителем;
необходимо регулярно проверять воздушный фильтр — если он забился, это нарушит работу компрессора;
турбина быстрее изнашивается, если сразу после остановки автомобиля отключать мотор. Чтобы продлить срок службы турбомотора, ему нужно дать немного поработать на холостых оборотах для охлаждения турбины.
Атмосферные двигатели, в отличие от турбированных, менее требовательны к специфическим характеристикам масла. В данном случае подойдут общие рекомендации, которые мы давали в одной из предыдущих статей.
Стоит лишь напомнить о том, что мы предлагаем простой способ найти подходящее масло, — воспользоваться удобным онлайн-подборщиком. Просто задайте параметры «вид техники — марка — модель» или воспользуйтесь строкой поиска, и вам будут предложены все подходящие виды масла согласно международным стандартам и допускам автопроизводителей.
Настала пора разобраться с тем, какие бензиновые двигатели мы считаем надёжными и долговечными. Представляем очередной дерзкий рейтинг двигателей от «АвтоСтронг-М».
В нашем рейтинге мы собрали десятку хороших и отличных моторов, которые нашли применение на автомобилях 2000-х годов. Сразу скажем, эти двигатели не во всём идеальны, что касается абсолютно любых бензиновых двигателей 21-го века.
И все же мы считаем и знаем: силовые агрегаты из нашего рейтинга способны без хлопот и дорогих ремонтов служить на протяжении сотен тысяч километров и десятков лет. Всё, что нужно таким двигателям – добротный масляный сервис каждые 10 000 км и минимальное внимание к некоторым техническим мелочам. Итак, какие же двигатели попали в наш ТОП-10! Сейчас узнаем!
Подробности о каждом моторе из рейтинга вы сможете увидеть на нашем YouTube-канале и прочитать на нашем сайте.
10 местоHonda 2.0 (K20)
Наш рейтинг открывают японские двигатели – силовые агрегаты Honda К-серии, объем 2,0 и 2,4 литра, а также относящийся к ним 2,3-литровый турбомотор. Эти моторы появились на автомобилях Honda в 2001 году. В принципе, это совершенно нормальные и ресурсные двигатели, хотя не такие неприхотливые, как их предшественники.
В приводе ГРМ здесь используется цепь, которая может потребовать замены при пробеге более 200 000 км. Но 10-е место двигателей Honda К-серии в нашем рейтинге обусловлено тем, что они имеют склонность к износу кулачков выпускного распредвала. То есть, на некоторых таких двигателях приходилось производить недешевую замену распредвала.
Нельзя сказать, что причиной этого является инженерная ошибка. Многие специалисты сходятся во мнении, что в двигатель Honda K-серии нужно заливать правильное масло, которое соответствует режиму эксплуатации. Если двигатель эксплуатируется в условиях пробочной езды при жаркой погоде, то лучше заливать более густое масло – с вязкостью 0W-40. Если мотор не испытывает температурных нагрузок, а также при эксплуатации в зимний период масло следует менять на менее вязкое – 0W-20. Ну а моторы тех Honda, которые гоняют по трассе и не греются до экстремальных температур, никогда не сталкивались с износом распредвала.
Обзор на двигатель Honda K20A вы можете посмотреть прямо тут:
Выбрать и купить двигатель Honda вы можете в нашем каталоге контрактных моторов.
9 место20-клапанные моторы VW / Первые 2.0 TFSI
На 9-е место мы поставили немецкий двигатель. Вернее, целое семейство двигателей концерна VAG – легендарные EA113. Это бензиновые двигатели, созданные еще в 1990-х на основе чугунного блока цилиндров. Эти рядные «четверки» привели в массы турбонаддув, уникальные ГБЦ с 5-ю клапанами на цилиндр, а в начале 2000-х познакомили поклонников автомобилей Audi, Volkswagen, а также Seat и Skoda с непосредственным впрыском. Именно с них начались те самые моторы TFSI.
Сегодня точно можно сказать, что эти двигатели хороши, хотя простотой они не отличаются. На самом деле, при наличии хорошего специализированного сервиса с умелым диагностом обслуживание этих двигателей проблем не доставляет и не обходится дорого. Да, в этих двигателях есть пара элементов, которые требуют замены примерно каждые 250 000 км. Но в целом данные силовые агрегаты способны пройти более 500 000 км и не склонны расходовать масло через цилиндропоршневую группу.
Обзоры двигателей Volkswagen / Audi вы можете посмотреть прямо тут:
Выбрать и купить двигатель Audi или двигатель Volkswagen вы можете в нашем каталоге контрактных моторов
8 местоДвигатели Mazda L-серии / Ford Duratec HEНа 8-м месте у нас целое семейство японских двигателей, который были разработаны инженерами Mazda. Эти силовые агрегаты L-серии объемом 1.8 и 2.0 литра, а также их более крупный родственник объемом 2.3 литра. Младшие двигатели очень распространены. Их устанавливали на все модели Mazda 2000 годов: они известны под «именем» MZR. Эти моторы достались всем моделям Ford 2000-х, созданных на платформах Focus и Mondeo. На немецких моделях эти двигатели известны как Duratec HE. И, кроме того, эти двигатели достались автомобилям Volvo, созданным во времена владения Ford.
Почему у этого японского мотора только 8-е место? Этот агрегат способен пройти более 300 000 — 400 000 км, но вынуждает некоторых владельцев раскошеливаться на замену масла и даже поршневых колец. Также у него немного мудреный впускной коллектор, который требует реставрации вихревых заслонок. Цепь в приводе ГРМ служит порядка трех сотен тысяч километров. В целом, это простой и незамудрёный двигатель. Для увеличения его ресурса следует почаще менять масло, не злоупотреблять короткими поездками и не наматывать лишних моточасов.
Обзоры двигателей Mazda L-серии / Ford Duratec HE вы можете посмотреть прямо тут:
Выбрать и купить двигатель Mazda или двигатель Ford вы можете в нашем каталоге контрактных моторов
7 местоNissan HR16DE h5MНа 7-м месте у нас еще один японский двигатель, который устанавливали и до сих пор устанавливают на автомобили Nissan и Renault. Это 1,6-литровый агрегат HR16DE или, по каталогам Renault, h5M. Это абсолютно нормальный и простой в обслуживании двигатель. Но подняться выше 9-го места ему не дал «потенциал» к залеганию поршневых колец. Кольца могут утратить свою подвижность из-за городского ритма движения по пробкам, когда мотор не знает высоких оборотов и долго работает на холостом ходу.
Хотя застраховать себя от такой неприятности поможет значительное сокращение пробега между заменами масла. Цепь в приводе ГРМ этого силового агрегата служит не более 250 000 км и в конечном итоге требует замены.
Выбрать и купить двигатель Nissan или двигатель Renault вы можете в нашем каталоге контрактных моторов.
6 местоBMW M54Еще один немецкий двигатель в нашем рейтинге – это рядная «шестерка» М54, предназначенная для всех моделей BMW, которые выпускались с 2000 по 2010 год. Этот силовой агрегат уходит корнями в 1990-годы: он эволюционировал из моторов М50 и М52. В зависимости от исполнения, имеет рабочий объем 2.2, 2.5 и 3.0 литра.
В отличие от своих преемников N-серии, этот двигатель BMW не имеет проблем с блоком цилиндров, цепью ГРМ и обычно беспокоит по мелочам. Чаще всего он требует небольшого ремонта: для устранения течей масла, оживления заслонок во впускном коллекторе и поиска причин нестабильного холостого хода. При огромных пробегах и, если владелец не следил за температурным режимом мотора, то есть, допускал эксплуатацию при загрязненных радиаторах, этот двигатель может начать расходовать масло на угар. Но этот масложор надолго и решительно устраняется заменой маслосъемных колпачков.
В общем, это долговечный и резвый двигатель, который может пройти более 500 000 км.
Обзор на двигатель BMW М54 вы можете посмотреть прямо тут:
Выбрать и купить двигатель BMW вы можете в нашем каталоге контрактных моторов.
5 местоRenault F4RНа 5-м месте в рейтинге бензиновых двигателей мы расположили совершенно простой и очень живучий двигатель Renault F4R. В начале 2000-х этот двигатель был основной движущей силой моделей Megane, Scenic, Laguna, а сегодня он «возит» на себе бюджетные Duster и Kaptur. Этот двигатель был создан в конце 1990-х на основе чугунного блока. Из него были сделаны высокофорсированные версии для заряженных Clio и Megane. Например, самый злой атмосферный F4R выдает 200 л.с., а самый мощный турбированный – 273 л.с. Одним словом, это достойный и долговечный мотор, рассчитанный на полмиллиона километров и даже более того.
Он может беспокоить лишь по мелочам: течами масла, износом демферного шкива, барахлением фазовращателя (если такой присутствует). Отдельно отметим, что поздние версии двигателя F4R для Duster и Kaptur с увеличенной до 11:1 степенью сжатия не переносят 92-й бензин. При эксплуатации на нем в таких моторах из-за детонации уже к 80 000 км возможно разрушение поршней.
Обзор на двигатель Renault F4R вы можете посмотреть прямо тут:
Выбрать и купить двигатель Nissan вы можете в нашем каталоге контрактных моторов
4 местоМодульные двигатели VolvoНа 4-е место мы поставили модульные бензиновые двигатели Volvo. В частности, самые распространенные из них двигатели на 4 и 5 цилиндров. Причем хороши все версии, как атмосферные, так и турбированные. 4-цилиндровые варианты представлены рабочим объемом от 1,6 до 2,0 литров, а 5-цилиндровые существуют в исполнении от 2 до 2,5 литров.
Это абсолютно годные моторы, не замеченные в серьезных поломках и не имеющие проблем с жором масла. Можно отметить только высокофорсированную версию 2,5-литрового турбомотора мощностью более 260 л.с., которая подвержена перегреву и связанному с ним пробою прокладки ГБЦ и иногда деформации ГБЦ.
В остальном обращения на ремонт по данным двигателям, как правило, связаны с фазовращателями и их управляющими клапанами. Также отдельного внимания заслуживает система вентиляции картерных газов, которая закупоривается, если владелец злоупотребляет короткими поездками и экономией на моторном масле. Но это известная особенность без труда диагностируется, но требует нескольких нормочасов для замены закупоренных трубок и основного бачка-отделителя. В приводе ГРМ шведских моторов используется зубчатый ремень, который подлежит замене каждые 120 000 км.
Обзор на двигатели Volvo вы можете посмотреть прямо тут:
Выбрать и купить двигатель Volvo вы можете в нашем каталоге контрактных моторов.
3 местоOpel 1,8 л (Z18XER)На 3-м месте в нашем рейтинге расположился 1,8-литровый атмосферный двигатель компании GM. Его устанавливали на автомобили Opel (Z18XER, A18XER) и Chevrolet (F18D4), Fiat и Alfa Romeo (939A4000). Этот двигатель был «заложен» в начале 2000-х и дожил до модели Insignia. Это основная движущая сила моделей Astra, Zafira и соплатформенных Cruze, Orlando. Что можно сказать о его надёжности?
В первые годы выпуска он имел проблему с фазовращателями, которые были бракованными и были заменены по отзывной кампании. То есть, эта проблема решена и при хорошем масляном сервисе фазовращатели не беспокоят вообще.
Единственное, за что можно и нужно поругать создателей этого двигателя, так это за теплообменник. Он служит не более 100 000 км, деформируется, его прокладки дубеют. В результате масло течет наружу, либо смешивается с антифризом. В таком случае придется еще поменять все резиновые трубки системы охлаждения, которые начнут рваться из-за воздействия масла. Поэтому, теплообменник следует менять превентивно. В остальном слабых мест в этом двигателе нет совсем.
Обзор на двигатель Opel вы можете посмотреть прямо тут:
Выбрать и купить двигатель Opel вы можете в нашем каталоге контрактных моторов.
2 местоFord Duratec V6На 2-место мы поставили не самый известный, но реально очень долговечный двигатель. Это бензиновый V6 от Ford, который также устанавливали на Mazda 6, Jaguar и Lincoln. Данная V-образная «шестерка» существует в исполнении с рабочим объемом 2.1, 2.5 и 3.0 литра.
Этот двигатель ведёт свою родословную еще с середины 1990-х. По некоторой информации этот мотор был разработан Porsche, а ГБЦ для него сконструировали специалисты Cosworth. В итоге получился неприхотливый и очень бодрый двигатель, развивающий до 220 л.с.
Это как раз тот случай, когда двигатель останется в прекрасном рабочем состоянии, когда кузов развалится в труху, а коробка поломается. Всё, что нужно этому мотору для счастья – своевременная замена масла. Тогда он легко пройдет более 500 000 км. В приводе ГРМ здесь используются две цепи. И спрос на них отсутствует: они существуют только в оригинале, заменителей никто не выпускает. Это говорит об их огромном ресурсе. Правде, если цепи все-таки придется менять, то запчасти обойдутся в приличную копеечку.
Обзор на двигатель Ford V6 вы можете посмотреть прямо тут:
Выбрать и купить двигатель Ford вы можете в нашем каталоге контрактных моторов.
1 местоДвигатели Toyota / Lexus 2AR-FE / 3MZ-FEИтак, первое место. На наш взгляд лидером нашего дерзкого рейтинга «ТОП-10» бензиновых моторов заслуживают стать двигатели Toyota. Причём, речь не только о старых агрегатах, служивших верой и правдой в 1990-х.
Например, мы довольны бензиновыми двигателями Toyota, созданными в 2000-х годах. Здесь у нас подвешен двигатель серии MZ. Это поздняя версия 3MZ объемом 3,3 литра с Lexus RX. Хороший и долговечный двигатель. Правда он имеет небольшую, но устранимую проблему с системой ВКГ, из-за которой может возникнуть расход масла на угар.
Также хорошими и буквально безупречными у инженеров Toyota получились двигатели серии AR. Один из них – распространенный 2,5-литровый двигатель мы разобрали в Грузии. По большому счету, у этого двигателя вообще нет слабых мест и проблем. Хотя его 2,4-литровый предшественник серии AZ отличился редкими, но серьезными неисправностями.
Обзор на двигатель Toyota 2.5 2AR-FE вы можете посмотреть прямо тут:
Выбрать и купить двигатель Toyota или двигатель Lexus вы можете в нашем каталоге контрактных моторов.
Источник Источник http://krutimotor.ru/atmosfernyj-dvigatel/
Источник http://lukoil-shop.ru/articles/mezhdu_atmo_i_turbo_kakoy_vybrat_dvigatel/
Источник http://autostrong-m.by/post/top-10-nadyozhnyh-benzinovyh-motorov-2000-2010-godov
Атмосферный двигатель. Определение. Плюсы и минусы.
Что такое атмосферный двигатель
Не всем владельцам авто понятно, что значит атмосферный двигатель автомобиля. Это бензиновые моторы классической конструкции, которые нагнетают воздух из окружающего пространства при помощи поршней карбюратора. При равномерном смешивании кислорода с распыленными частицами бензина образуются топливные смеси. Они используются для сжигания в камере сгорания бензинового двигателя.
Принцип действия атмосферного двигателя:
- Всасывание воздуха из атмосферы.
- Смешивание с бензиновыми парами в пропорции: бензин – 1 часть, кислород – 14.
- Подача смеси в камеру сгорания.
- Расширение объема.
- Давление на поршень.
- Передача вращения на коленчатый вал.
Эффект засасывания воздушных масс возникает, благодаря созданию разряженной атмосферы в полости впускного коллектора.
Принцип работы
Основной принцип любых двигателей внутреннего сгорания заключается в воспламенении топлива в специальных камерах, благодаря чему в действие приводятся поршни, а далее и последующие узлы автомобиля. В качестве воспламеняющейся жидкости зачастую выступает бензин разнообразных марок либо дизель, но под топливом также стоит понимать и смесь бензина либо дизеля с воздухом. Это является главным условием воспламенения в моторе, так как без достаточного количества кислорода этот процесс невозможен. Наиболее оптимальным соотношением для успешного возгорания считается смесь 1:14 (воспламеняющаяся жидкость: воздух). Для решения этой проблемы в любом двигателе внутреннего сгорания предусмотрен специальный узел, отвечающий за смесь топлива и воздуха. В большинстве современных автомобилей за это дело «берутся» автоматические компрессоры подачи воздуха либо турбины (инжектор, карбюратор). Именно поэтому часто их и называют турбированными. Но в «атмосферниках» всё проходит самотёком. Благодаря естественному атмосферному давлению воздух пытается заполнить любое свободное пространство, на основе чего и построен принцип атмосферного двигателя. Однако зачастую этого недостаточно для достижения воздушно-топливной смеси, поэтому в «атмосферниках» создана механическая система подачи воздуха. Поршни мотора выступают в качестве воздушного насоса, который затягивает необходимое количество воздуха в камеру сгорания. Для этого в атмосферных двигателях обустраивается специальный воздуховод, обеспечивающий бесперебойную подачу кислорода извне. Знаете ли вы? Первые чертежи автомобиля принадлежат известному итальянскому художнику и учёному Леонардо да Винчи. Таким образом, главное отличие турбированного двигателя от атмосферного заключается в автоматическом нагнетателе воздуха, которого в «атмосферниках» нет. Кроме того, не стоит забывать и о том, что в турбированных моторах воздушно-топливная смесь образуется принудительно (благодаря образованию повышенного давления от 1,5 до 3 атмосфер).
Турбированный или атмосферный двигатель. Что лучше и надежнее?
Каждый автолюбитель рано или поздно предстает перед выбором: машину с каким мотором, атмосферным или турбированным, ему приобрести. И у тех, и у других силовых установок есть свои достоинства и недостатки.
Атмосферный двигатель
Это двигатель, который не имеет турбонагнетателя в своей конструкции. Он работает при обычном атмосферном давлении. Поршни затягивают воздух через систему фильтрации, где при помощи таких устройств, как карбюратор или инжектор, этот воздух смешивается с топливом, после чего получается горючая смесь, которая впоследствии воспламеняется. У этого принципа работы, как обычно, есть свои плюсы и минусы. Плюсы 1) Бензиновый вариант имеет более простое строение (если сравнивать с турбированным). Поэтому его ремонт обходится дешевле.
2) Работает не при таких больших нагрузках, а поэтому ресурс выше (иногда выше в два и более раз) 3) Расход масла. Отсутствуют устройства, которые дополнительно требуют смазки, а поэтому расход масла не большой. 4) Качество масла. Не так требователен к маслу, как его турбированный собрат, поэтому можно лить и минеральные масла, и полусинтетику, и синтетику. Однако стоит помнить — чем лучше масло, тем дольше двигатель проходит. Не стоит экономить в этом подходе. 5) Качество топлива. Менее требователен к качеству топлива. 6) Замена масла.
Масло меняется через 15 – 20 тысяч километров. Всегда следите за уровнем масла, это может привести к серьезной поломке!! 7) Прогрев. Атмосферник быстрее прогревается, нежели турбированные варианты. Плюсы такого двигателя понятны – он простой, неприхотливый (в том числе и к топливу), более дешевый в обслуживании, масло меняется реже и т.д. Если не «гоняетесь» по городу, то атмосферник лучше, дешевле и главное долговечнее. Минусы 1) Мощность. При таком же объеме, проигрывает по мощности турбированному варианту. 2) Расход.
Тут все сложно, однако хочу объяснить более понятно. В общем так — атмосферный двигатель будет иметь больше объем, но столько же лошадиных сил, как турбированный при меньшем объеме! А соответственно расход будет больше. Простыми словами – «атмосферник» при объеме в 2,0 литра, выдает скажем 140 л.с., расход у него будет в районе 12 — 13 литров. В то время как турбированный вариант будет иметь столько же (140 л.с.) при объеме 1,4 литра, а расход около 8 – 9 литров.
Минусы все.
Да, обычные «атмосферники» не оборотистые, и не рассчитаны на большие нагрузки, зато долговечные!
Турбированный двигатель
Первый турбированный двигатель был изобретен ее в 1905 году, а на легковых автомобилях моторы такого типа начали применять в середине ХХ века. Принцип его работы состоит в том, что установленная на двигатель турбина использует выхлопные газы, чтобы создавать принудительное давление воздуха, который поступает в цилиндры, где образуется топливная смесь. Под воздействием давления в цилиндры закачивается большее количество воздуха, чем у атмосферного двигателя, что влечет за собой увеличение мощности двигателя (в среднем до 10%). Плюсы 1) Мощнее.
Как уже писал выше, при меньшем объеме достигает больше мощность за счет нагнетаемого под давлением воздуха. 2) Меньше расход топлива (относительно лошадиных сил). 3) Имеет меньший вес и размеры, чем обычные. А это может благотворно сказаться на расходе и компактности расположения силового агрегата. 4) Могут быть трех и даже двух цилиндровые и очень компактные, особенно сейчас в век экономии топлива. Причем мощности будет достаточно, на уровне 4 цилиндровых атмосферных вариантах. 5) Турбированный мотор экологичнее (более эффективное сгорание топлива в цилиндрах).
6) Турбированный мотор имеет более высокий крутящий момент – это сказывается на лучшей, чем у «атмосферника» динамике. 7) Турбированный мотор издает меньше шума, чем атмосферный двигатель. Конечно, плюсов немало, основные это меньший расход топлива и большая мощность. Но минусов, тоже достаточно. Минусы 1) Опять все тот же расход топлива. Если смотреть со стороны объема двигателя, а не со стороны лошадиных сил, то обычный атмосферник 1,4 литра, будет расходовать меньше, чем турбированый 1,4 литра, но будет намного слабее. Турбированный же будет превосходить по мощности атмосферный.
Из-за того, что для приготовления смеси в цилиндрах используется больший объем воздуха, туда подается больший объем горючего. Не следует забывать, что турбина быстрее изнашивается, если сразу же при остановке автомобиля отключать мотор. Поэтому для продления срока эксплуатации турбины нужно давать мотору некоторое время поработать на холостых оборотах, чтобы охладилась турбина, и только затем выключать ее. 2) Более чувствителен к качеству топлива. Если будете лить «дешевый» 92 бензин на сомнительных заправках, турбина быстро умрет. 3) Качество масла.
Нельзя лить минералку и полусинтетику! Для турбированых вариантов нужно свое синтетическое масло, причем производители вас жестко ограничивают, то есть шаг вправо, шаг влево! А это масло недешевое, иногда дороже на 30 – 40 % 4) Ресурс турбины небольшой, около 120 000 километров, а дальше потребуется замена, даже при надлежащем уходе! Причем замена обходится очень недешево! 5) Плохо греется зимой. Необходимо потратить больше времени на прогев. 6) Замена масла. Менять масло нужно через 10 000 километров, а не через 15 – 20000 как на обычных атмосферных двигателях.
Срок службы масла и масляного фильтра в таком двигателе сокращен, по сравнению с таковым у атмосферного, в полтора – два раза из-за того, что турбине приходится работать при более высоких температурах. 7) Также нужно следить за состоянием воздушного фильтра: если он будет забит, это ухудшит работу компрессора. Таким образом, можно сделать вывод, что положительных моментов и недостатков хватает и там и там.
Плюсы и минусы атмосферных двигателей
С появление силовых агрегатов, оснащенных турбокомпрессором, многие водители стали отдавать предпочтение турбированным транспортным средствам. Однако, существует немало автомобилистов, которые при вопросе, какой двигатель лучше атмосферный или турбированный, выбирают привычный классический вариант, основываясь на следующих преимуществах:
«Атмосферник» отличают следующие достоинства:
- хороший ресурс;
- надёжность в эксплуатации;
- долговечность;
- простота использования;
- относительная простота проведения профилактических и ремонтных работ;
- неприхотливость в отношении качества топлива.
О надёжности атмосферного двигателя красноречиво свидетельствуют цифры. Качественные моторы позволяют автомобилю проходить до 500 тыс. километров. В истории развития автомобилестроения известны случаи, когда мотор переставляли из устаревшей машины в новую, и он продолжал исправно работать на протяжении ещё многих лет.
Атмосферные двигатели внутреннего сгорания отличаются наиболее длительным пробегом. Известны случаи, когда машины с установленными атмосферниками, работают без капитального ремонта на протяжении пути, более 500 тысяч километров. Единственное условие – своевременный уход и регулярная замена моторного масла с фильтрами. Их детали и узлы устойчивы против износа. Надежный атмосферный мотор обладает повышенным моторесурсом, продолжает работать даже после неоднократных замен кузова автомобиля.
Благодаря безотказной работе атмосферного мотора и простоте его эксплуатации, он неприхотлив к качеству топлива и смазочных материалов. При регулярном использовании бензина пониженного качества такие двигатели, если и выходят из строя, быстрее восстанавливают свою работоспособность. Основное требование к моторному маслу – это обеспечение необходимого уровня. Замена смазочной жидкости должна проводиться каждые 15 – 20 000 км. При выборе наиболее подходящей марки моторного масла для атмосферного двигателя рекомендуется отдавать предпочтение синтетике или полусинтетике.
Интересно: В отличие от турбонаддувного мотора, здесь можно заливать и минеральные масла, если не получилось приобрести более качественные смазочные материалы.
Конструкция «атмосферника» такова, что с его ремонтом или профилактикой может справиться не только профессионал, но и грамотный автолюбитель
. Агрегат можно разобрать до последней детали и собрать обратно — конструкция позволяет сделать это без особых затрат. Нередки случаи, когда при ремонте агрегата используются «неродные» детали и комплектующие, произведённые другими производителями. Соответственно, и стоимость ремонта такого двигателя обходится дешевле.
Атмосферные двигатели внутреннего сгорания обладают некоторыми недостатками:
- Сравнительно большой вес механизма.
- Пониженная мощность и развиваемый крутящий момент в сравнении с мотором, оснащенным турбиной.
- Атмосферники не рассчитаны на работу под большими нагрузками.
- Сложности эксплуатации на большой высоте в условиях разреженного воздуха.
- При работе атмосферного двигателя на малых оборотах не всегда всасывается достаточное количество воздуха, что отражается на стабильности работы.
Впрочем, на этом перечень «минусов» исчерпывается. Атмосферные ДВС надёжны, просты и долговечны, но при этом не созданы для больших нагрузок и высоких оборотов.
Преимущества и недостатки атмосферного двигателя
Атмосферный бензиновый двигатель сегодня является наиболее популярным и доступным по цене мотором, который устанавливается на подавляющее большинство автомобилей. Что касается дизелей, то современные моторы данного типа на легковых авто практически всегда оснащаются турбонаддувом.
Плюсы атмосферных ДВС
Главной отличительной особенностью атмосферных двигателей является относительная простота конструкции моторов данного типа. Также стоит выделить больший моторесурс атмосферных бензиновых и дизельных ДВС сравнительно с турбодвигателями. На практике средний срок эксплуатации «атмосферников» в обычных режимах (при условии качественного и своевременного обслуживания) может составлять около 400 — 500 тысяч пройденных километров до первого капитального ремонта. Для турбированных агрегатов ремонт может понадобиться уже через 200-250 тыс. километров.
Рекомендуем также прочитать статью о том, что такое форсированный двигатель. Из этой статьи вы узнаете об основных способах форсирования ДВС без установки турбонагнетатаеля.
Атмосферные двигатели проще обслуживать и эксплуатировать, так как простая конструкция данного типа двигателя менее требовательна к качеству горючего и моторного масла. Атмосферные моторы лучше переносят случайную заправку бензином или соляркой низкого качества. Также отмечается высокая ремонтопригодность атмосферных двигателей. Такие двигатели меньше нагружены сравнительно с ДВС, которые оборудованы механическими нагнетателями или турбокомпрессорами.
Упрощенная конструкция атмосферных моторов исключает необходимость дорогостоящего обслуживания и ремонта узлов, которые присутствуют в устройстве двигателей с наддувом: турбины, интеркулеры, компрессоры и т.д. Стоимость запчастей и сервисных работ для устранения тех или иных неисправностей атмосферного двигателя заметно дешевле по сравнению с ремонтом турбомоторов.
Минусы атмосферников
При всех очевидных преимуществах атмосферный мотор не лишен определенных недостатков. Такие двигатели тяжелее и больше по размерам, по мощности, показателю крутящего момента и динамике разгона атмосферные агрегаты явно проигрывают ДВС с наддувом.
Дело в том, что схема питания атмосферника за счет самостоятельного забора наружного воздуха не позволяет обеспечить оптимальное соотношение топлива и воздуха 1:14 на всех режимах работы двигателя. Другими словами, при низких оборотах мотор засасывает меньше воздуха, а на высоких оборотах эффективному забору воздуха препятствует проходное сечение воздуховодов, сопротивление воздушного фильтра и т.д. Результатом становится то, что на «низах» атмосферник еще не тянет, а на «верхах» уже не тянет. Эффективность работы агрегата на таких режимах заметно снижается, атмосферный мотор обеспечивает наилучшую отдачу в более узком диапазоне сравнительно с турбированными ДВС.
Примеры транспортных средств с мощными атмосферными двигателями
На современном авторынке представлены автомобили с атмосферниками, выпущенные под известными брендами:
- Mercedes C 63 FMG Coupe Edition 507.
- Chevrolet Corvette C 7 Stingray.
- Jeep Grand Cherokee SRT.
- Audi RS 5.
- Audi RS 4 Avant.
- Chevrolet Camaro.
- Mercedes SLK 55 AMG.
- Porsche Cayenne GTS.
- Infiniti QX 70.
- Lexus LS 460.
- Mercedes-Benz OM 602.
- OM 612.
- OM 647.
- BMW моторы серии М2х, М5х, М6х, N5х.
Атмосферный двигатель работает предсказуемо, что для многих автомобилистов является несомненным преимуществом. Решить для себя, какой из вариантов подойдёт больше, стоит исходя из собственных предпочтений. Если в приоритете надёжность, лёгкость в эксплуатации и обслуживании, лучше остановить свой взгляд на моторе атмосферного типа, но если на первом месте показатели динамики, то выбор очевиден. Кстати, усилиями умельцев, практикующих тюнинг, на атмосферные двигатели также устанавливаются турбины. Сделать это непросто и требует специальных навыков, но на практике вполне применимо. Поскольку устройство не лепится к мотору наобум, предполагаются расчёты скорости и объёма поступающего воздуха. Самостоятельно такие работы лучше не выполнять, потому что успешно справиться с задачей смогут только виртуозы своего дела.
Источники: drivertip.ru, auto.rambler.ru, fastmb.ru, motoran.ru.
что это такое в авто, чем TFSI отличается от TSI
У каждого бренда компании эти двигатели имеют определенные различия. В автомобилях Audi чаще всего применяют моторы TFSI, которые известны практически каждому любителю этой немецкой марки.
Существует множество мифов, построенных вокруг данного типа агрегатов. Многие считают, что буква F в названии совершенно ничего не значит, а добавлена просто для различия в модельных линейках. И моторы TSI, по мнению даже некоторых экспертов, полностью идентичны двигателям TFSI. Но это неправда, так как строятся они на разных основах. Сегодня мы поговорим как про данные моторы в отдельности, так и в аспекте сравнения с движками Volkswagen TSI.
Что такое TFSI – расшифровка и особенности технологий
Изначальную технологию данные моторы заимствовали у более старых движков FSI. Очень популярным был мотор VAG 2.0 FSI, который ставили на Skoda, Seat и Volkswagen. Это атмосферный двигатель с непосредственным впрыском топлива в цилиндры. Агрегат получил довольно надежную основу, хорошо проработанную конструкцию и достаточно длительный срок эксплуатации.
TFSI двигатель расшифровывается как Turbo Fuel Stratified Injection. Название показывает, что это турбированный мотор с прямым впрыском топлива в камеры сгорания. Вот некоторые особенности турбомотора:
- Измененные поршни. Специально для турбированной версии изменили верхнюю часть поршней, они получили большие выемки для работы при сниженной компрессии.
- Повышение эффективности и снижение выбросов в сравнении со старой версией FSI, чтобы вместить новый движок в сложные требования экологических норм.
- Изменили конструкторы форму и особенности работы коленвала и шатунов. Изменения коснулись и качества материала, производитель повысил его для турбодвигателей.
- Впускная и выпускная системы также получили изменения, они стали более точными и эффективными, что было жизненно необходимо для версии с компрессором.
- Конечно, конструкторам пришлось установить более мощный и надежный топливный насос. Это обеспечило эластичность работы движка на высоких оборотах.
Основные понятия поясняют, что такое TFSI двигатель, как он работает, и каковы его основные преимущества. Если вы когда-нибудь сталкивались с моторами FSI от VAG, то знаете, что это были самые надежные и удачные двигатели среднего класса в атмосферном исполнении. Многие из них доезжают до 500 000 км без ремонта и вмешательства. Достаточно хорошо обслуживать агрегат и лить дорогое масло в нужный срок.
Чем отличаются двигатели TSI и TFSI?
Моторы TSI строятся на другой технологии. Для производства этого движка концерн Volkswagen не брал старые атмосферные моторы, а построил новый агрегат. У него есть впускной коллектор, две турбины, одна из которых электрическая и работает практически постоянно. Вторая механическая турбина имеет классическую конструкцию. То есть, по своей сути это мотор би-турбо.
Основные отличия от TFSI также заключаются в том, что Volkswagen не обеспечил достойную конструкцию самого блока цилиндров, поэтому ресурс движков TSI далеко не всегда добирается до 200 000 км. Да и сами турбины приносят владельцам очень много неприятностей, особенно при нарушении регламента обслуживания. Особыми капризами отличаются двигатели 1.4 TSI до 2012 года разработки.
Сегодня разработкой и продолжением серий этих двух агрегатов занимаются разные конструкторские бюро. Технологию TFSI на себя взял концерн Audi, а TSI устанавливается на VW, Skoda и Seat. Впрочем, уже ходят слухи о создании новой единой платформы для производства турбированных двигателей меньшего объема.
Основные недостатки и преимущества технологии TFSI
Как уже было сказано выше, разница TSI и TFSI налицо, и она не в пользу первой технологии. Моторы с буквой F в обозначении более объемистые, демонстрируют гораздо больший срок жизни. Сами турбины при условии хорошего обслуживания не ломаются до 300 000 км и 10 лет эксплуатации. В список преимуществ можно записать очень умеренный расход топлива, учитывая большую мощность, которую компания выжимает из данных разработок.
А теперь давайте немного поговорим о минусах технологии:
- двигатели с получением турбины утратили неприхотливость и всеядность, нужна хорошая заправка;
- стоимость обслуживания заметно возросла, приходится раскошеливаться на дорогие масла и фильтры;
- цена ремонта будет колоссально высокой, все запчасти нужно ставить оригинальные и дорогостоящие;
- высокий расход масла – конструктивная особенность движков, придется изредка доливать смазочную жидкость;
- в системе ГРМ установлена цепь, и это вызывает определенные недостатки в виде растяжения цепного привода.
Все минусы связаны с тем, что мотор производили в большой спешке, чтобы устанавливать его на машины к введению новых экологических норм. Многие недостатки уже не относятся к моторам TFSI нынешнего поколения, а встречаются только на движках 2012-2014 года производства. В остальном значительных минусов с агрегатами нет, каких-либо детских проблем и распространенных неполадок до лимитов пробега в 200-250 тысяч км не бывает.
Итоги – что учесть при покупке машины с TFSI?
Если вы покупаете новое авто с таким агрегатом, можно смело брать машину с любым объемом двигателя. Специалисты из Ауди сделали все возможное, чтобы моторы служили долго и не требовали никакого ремонта. Но подержанные варианты нуждаются в более тщательном подборе и осмотре. Важно провести диагностику, выяснить реальный пробег, уточнить качество обслуживания. Из этих факторов уже можно сложить определенное мнение о машине и ее потенциальном ресурсе.
В целом, агрегаты TFSI считаются надежными и качественными. В своей природе они повторяют практически все преимущества когда-то популярной серии FSI, сегодня моторы продолжают славный ряд надежных двигателей VAG, к которым практически нет претензий. И этим они отличаются от новой разработки TSI.
Newcomen атмосферный двигатель
Наука и технологии
2 мин чтения
Посетители галереи Scotland Transformed в Национальном музее Шотландии не могут пропустить мощный двигатель Ньюкомена. Возвышаясь на 9,5 метра, он является центральным элементом галереи, рассказывающей об истории Шотландии с 18 по 19 века, от Союза 1707 года до промышленной революции.
Файл фактов по двигателям Newcomen
Дата
1811 (хотя некоторые детали были переработаны из более раннего двигателя Newcomen)
Сделано в
Falkirk, Scotland
Сделано в
The Carron Company по проекту Томаса Ньюкомена (1664-1729)
Изготовлен из
Чугун, дерево
Размеры
Высота 9.5м, длина 9,5м, ширина 45м
Приобретено
Подарено Бургом из Килмарнока
Музейный справочник
T.1958.117
На выставке
Преобразованная Шотландия, уровень 3, Национальный музей Шотландии
Знаете ли вы?
Томас Ньюкомен изобрел первую паровую машину в 1712 году.
Двигатель работал на шахте Кэпрингтон, Эйршир. Он был построен по проекту Томаса Ньюкомена, который создал первую паровую машину для перекачивания воды, разработав метод выработки энергии за счет атмосферного давления.
Вверху: Двигатель Ньюкомена в галерее Scotland Transformed.
Как работает двигатель Ньюкомена?
В его двигателе использовался поршень, работающий внутри цилиндра с открытым верхом.Поршень цепями соединен с качающейся балкой. На другом конце балка соединена стержнем с насосами в шахте. При ходу забортного двигателя цилиндр заполняется паром из котла, а затем в цилиндр впрыскивается холодная вода, чтобы преобразовать пар обратно в воду и создать вакуум (когда вода превращается в пар, он расширяется в 1500 раз, поэтому удерживаемый объем составляет пар, если снова сконденсироваться в воду, создаст вакуум). Затем вакуум опускает поршень вниз и с помощью качающейся балки поднимает поршень в водяном насосе.
Схема показывает этот принцип в действии. Пар отображается как розовый, а вода как синий. Клапаны перемещаются из закрытого (красный) в открытый (зеленый).
Какова история нашего двигателя Ньюкомена?
Кэпрингтонская шахта открылась в середине семнадцатого века, и у нее постоянно возникали проблемы с дренажем, так как она находилась в низменной долине Ирвин. Компания Carron Company, Фолкерк, сначала поставила детали для двигателя Ньюкомена сэру Уильяму Каннингхэму из Капрингтона в 1781 году, но насосный вал рухнул в 1828 году, и эта шахта впоследствии была заброшена.
Несмотря на более низкую топливную эффективность, чем у двигателя Watt, другой Newcomen был заказан той же фирмой в 1811 году по цене 352,42 фунтов стерлингов. Возможно, это произошло из-за того, что топлива было в изобилии, а единовременный платеж для Ньюкомена было легче контролировать, чем ежегодный лицензионный сбор для Бултона и Ватта.
Двигатель был установлен на месте недалеко от Эрлстона. Одна из его составных частей, коленная труба с инвентарным номером N1708, была переработана из оригинального двигателя 1781 года. Новый двигатель осушил пласт слепого угля на глубине 50 метров и работал непрерывно в течение девяноста лет с заменой чугунной балки в c.1837 г. и несколько новых котлов.
Как паровоз попал в музей?
В 1901 году двигатель был заменен электронасосами и подарен Бургу из Килмарнока полковником Каннингхэмом из Капрингтона. Andrew Barclay & Sons было поручено установить двигатель в Институте Дика, где он оставался до 1958 года, когда конструкция оказалась нестабильной.
Затем двигатель оставался на хранении в течение сорока лет, пока открытие нового музея Шотландии в 1998 году не дало ему новую жизнь.Восстановленный внутри музея во время строительства, восстановленный двигатель может похвастаться новыми компонентами, заменяющими те, которые были в плохом состоянии или отсутствовали, включая оригинальные деревянные детали и машинное отделение, которое было спроектировано на основе существующих машинных отделений того периода, исторических документов и фотографий. .
Двигатель можно найти в галерее Scotland Transformed. Он приводится в действие гидравлической силой, и вы можете видеть его в движении в разное время в течение дня. Выставку дополняет действующая модель двигателя Newcomen, также выставленная в Scotland Transformed.
Еще нравится
Вт атмосферный двигатель
Ниже котел для двигателя. Котел находится за двигателем; в кирпичная колонна слева от котла — основная опорная колонна; стена справа на фото стена на фото поршня (вверху слева) с подвесные инструменты.
Этот насос мощностью 1796 Вт очень похож на рисунок ниже. Основное отличие двигателя в музее от эскиза — расположение конденсатора.В музее конденсатор находится на стороне насоса основной опорной колонны, а не на стороне парового поршня. Однако принципы работы парового поршня такие же.
Обратите внимание, что рисунок справа перевернут относительно фотографии выше. Как и двигатель Ньюкомена, этот цилиндр работает только при движении вниз парового поршня; двигатель полагается на вес стороны насоса, чтобы наклонить балку так, чтобы паровой поршень поднялся. Обратите внимание, что цепи соединяют шток поршня и балку. Пар не может подтолкнуть балку вверх. Поднимающаяся балка тянет вверх по поршню.
Паровой поршень / цилиндр заметно сложнее, чем у Ньюкомена. Во-первых, обратите внимание, что верхняя часть парового цилиндра закрыта. Пар будет находиться над поршнем при атмосферном давлении во время хода как вверх, так и вниз. Пар будет находиться под поршнем при ходе вверх и под вакуумом при ходе вниз. Эти шаги более подробно описаны ниже.
Поршень имеет «рубашку». Это вторая оболочка вокруг главного цилиндра. В этой рубашке можно было удерживать пар, чтобы цилиндр всегда оставался горячим.
Обратите внимание, что водяной насос конденсатора подает холодную воду (вероятно, из шахты) в большой колодец, чтобы конденсатор оставался холодным. Воздушный насос (как его называет Ватт) служит для откачки конденсата и любого неконденсируемого газа из конденсатора х . Выход воздушного насоса и находится в меньшей камере, отдельной от колодца с холодной водой.Эта камера заполняется горячим конденсатом от воздушного насоса k . Эта горячая вода возвращается в котел с помощью насоса питательной воды котла.
Шаг 1 — ход парового поршня вверх.
Вес со стороны насоса тянет балку вниз слева. (На некоторых двигателях дополнительный вес добавляется к насосной стороне балки, чтобы гарантировать, что она тяжелее, чем сторона пара). Это действие подтягивает паровой поршень. Клапаны c, e, f находятся в паропроводе слева от парового цилиндра сверху вниз соответственно.На шаге 1 закрываются c и f , а клапан e открыт. Пар сверху поршня проходит через трубу o слева и попадает в нижнюю часть поршня.
Обратите внимание, что водяной насос конденсатора и насосы питательной воды на странице описания насоса выглядят как тип B (за исключением впускного отверстия внизу), и они будут заполняться на этом этапе, когда штоки насоса опускаются. Шток воздушного насоса поднимется, выталкивая свое содержимое на этом этапе и одновременно создавая вакуум в конденсаторе и удаляя любую жидкость.Обратите внимание, что воздушный насос явно относится к типу B на странице описания насоса. Между воздушным насосом и конденсатором установлен обратный клапан, а в поршне просверливаются обратные клапаны сверху. В верхней части хода парового поршня штифты n на штоке воздушного насоса приводят в действие три рычага m для изменения положения клапана.
Шаг 2 — ход парового поршня вниз
Клапан e закрыт, клапаны c и f открыты.В этом положении клапана верхняя поршневая камера открыта для котла, а нижняя поршневая камера открыта для конденсатора. Это рабочий ход. Давление в котле примерно атмосферное, в конденсаторе вакуум. Пар из-под поршня устремляется в конденсатор. Пар конденсируется, поддерживая вакуум. Дополнительный водный конденсат впускается в конденсатор с помощью струи через отверстие сбоку конденсатора (можно увидеть регулирующий стержень для струи, начинающийся между клапанами e и f и стекающий вниз к немаркированному белому ящику на сторона конденсатора).Поршень втягивается вакуумом вниз, заполняя пространство над поршнем паром, отбираемым из котла. Во время этого хода поршень остается горячим.
На этом этапе штоки насоса питательной воды и водяного насоса конденсатора поднимаются, вытесняя из них содержимое насоса и одновременно всасывая больше жидкости в корпус насоса. Шток воздушного насоса опускается, позволяя поршню проваливаться через конденсат и воздух, который попадает в корпус цилиндра во время движения вверх. (Обратите внимание, что обычно вода содержит растворенное количество воздуха, и этот воздух входит в поршень и должен быть удален).В конце хода вниз несколько различных штифтов n на штоке воздушного насоса приводят в действие рычаги m , и клапаны c, e, f снова переключаются, позволяя двигателю повторить ход вверх. Жиклер конденсатора также закрыт.
Анимированные двигатели — Newcomen Atmospheric
Newcomen Atmospheric Engine
Этот великолепный двигатель был запатентован в 1705 году Томасом Ньюкоменом и является обычно считается первой «современной» паровой машиной. В отличие от более поздних паровые двигатели, Newcomen работает по принципу атмосферы .
Newcomen был впервые использован для откачки воды из шахт в Англии. В Шток насоса слева соединен с приводным поршнем большим качающимся луч.
Впуск
Вода непрерывно кипятится для получения пара. Во время поршневой ход вверх, этот пар низкого давления (около 5 фунтов / кв. дюйм) попадает в цилиндр. Давления недостаточно, чтобы поднять поршень на своем собственный — вес насосной штанги делает большую часть работы.
Впрыск воды
В верхней части хода паровой клапан закрыт и струя воды ненадолго включился, охлаждая пар в цилиндре.
Мощность
Холодный пар сжимается, всасывая поршень вниз. Другими словами, чем выше атмосферное давление, тем больше поршень движется вниз, следовательно, название атмосферный двигатель . В конце хода охлаждающая вода сливается из цилиндра через дополнительный канал, который здесь не показан.
Вспомогательный насос
При движении вверх вспомогательный насос заполняет охлаждающую воду. резервуар.
Двигатели Newcomen были успешными отчасти потому, что они были очень безопасны для работать.Поскольку пар находился под таким низким давлением, риска не было. опасного взрыва котла.
Примечание о клапанном механизме
Самые ранние двигатели Newcomen имели клапаны с ручным управлением (как показано здесь). Оператор стоял на платформе возле цилиндра база и закидывала рычаги клапана на каждый ход.
Популярная легенда гласит, что мальчики, выполняющие эту утомительную задачу изобрел автоматический клапан, натянув тросы и рычаги для цель.
Книга Томас Ньюкомен, Предыстория пара Двигатель убедительно развеивает это представление и дает детали автоматических клапанов, разработанных Ньюкоменом и его сотрудником Джон Колли. Чтобы узнать больше о движке Newcomen, я настоятельно рекомендую этот книга. Я надеюсь когда-нибудь проиллюстрировать автоматические клапаны.
BBC — Девон — Откройте для себя Девон
Томас Ньюкомен, родившийся в Дартмуте в 1663 году, внес значительный вклад в промышленную революцию, создав атмосферный двигатель.
К 1685 году Ньюкомен стал торговцем скобяными изделиями в своем родном городе.
Некоторыми из его крупнейших клиентов были владельцы шахт в Корнуолле, которые столкнулись со значительными трудностями из-за затопления по мере того, как шахты становились все глубже.
Стандартные методы, используемые для удаления воды — ручная откачка или команды лошадей, тянущих ведра на веревке, — были медленными и дорогими, и они искали альтернативу.
В 1712 году Ньюкомен изобрел первый в мире успешный атмосферный паровой двигатель.
Двигатель перекачивает воду с помощью вакуума, создаваемого конденсированным паром.
Он стал важным методом слива воды из глубоких шахт и, следовательно, был жизненно важным компонентом промышленной революции в Великобритании.
Изобретение Ньюкомена позволило развести шахты на большие глубины, чем это было ранее экономически возможно, и таким образом помогло добыть уголь, железо и другие металлы, которые были жизненно важны для развития промышленности.
Атмосферный двигатель с некоторыми основаниями может претендовать на звание самого важного изобретения промышленной революции.
Newcomen Engine
Хотя его КПД составлял всего один процент, это было дешевле, чем использование лошадей для приведения в действие насоса.
Первый рабочий двигатель Newcomen был установлен на угольной шахте в замке Дадли в Стаффордшире в 1712 году.
У него был цилиндр диаметром 21 дюйм и длиной почти восемь футов, и он работал со скоростью 12 движений в минуту, поднимая 10 галлонов воды. с глубины 156 футов.
Двигатели были прочными и надежными, работали днем и ночью, что сделало их очень успешными.
К моменту смерти Томаса Ньюкомена в 1729 году в Великобритании и по всей Европе работало не менее 100 его двигателей.
Они использовались на протяжении 18 века и по-прежнему имели влияние в 20 веке.
Один двигатель в Pentich все еще работал 127 лет после того, как он был впервые установлен.
Однако Ньюкомен не умер богатым человеком. Он не получил большого признания за свое изобретение, большая часть внимания пришлась на Джеймса Ватта, который усовершенствовал идею Ньюкомена.
Этот принцип был использован в следующем столетии для создания «Атмосферной железной дороги», где поезд двигался по линиям, приводимый в движение перепадом давления, создаваемым в трубе, соединенной с паровыми машинами вдоль маршрута.
Анимированная иллюстрация любезно предоставлена Обществом Ньюкомена США.
»Паровоз Newcomen
Настоящий двигатель Ньюкомена из 1760
На следующих фотографиях изображен самый старый из сохранившихся двигателей Ньюкомена.Этот двигатель, известный как Fairbottom Bobs, использовался для слива воды из угольных карьеров Каннел недалеко от реки Медлок, примерно в полумиле от Парк-Бридж, Эштон-андер-Лайн, в Англии. Название возникло из-за покачивания деревянной балки. Двигатель, построенный в 1760 году, использовался до 1834 года. Двигатели Ньюкомена впервые появились примерно в 1712 году, поэтому этот конкретный двигатель представляет собой «усовершенствованную» конструкцию, включающую, например, подачу воды в котел (для поддержания его доливки водой), вспомогательный насос. чтобы бачок постоянно был наполнен, и водяной затвор в верхней части цилиндра.
На этой фотографии, сделанной в 1880-х годах, показан двигатель в том виде, в котором он был установлен, но уже находился в состоянии разрушения, так как он не использовался в течение пятидесяти лет. Эта фотография была скопирована с сайта Эштон-андер-Лайн на северо-западе Англии, где находился оригинальный двигатель. К 20-м годам прошлого века двигатель был запущен и пришел в крайне плохое состояние. Он был куплен Генри Фордом в 1929 году и привезен в Америку, где сегодня находится в музее Генри Форда в Дирборне, штат Мичиган, и выставлен вместе с другими машинами, которые помогли добиться перемен.Общая выходная мощность этого двигателя составляет примерно 20 лошадиных сил. Двигатель работал со скоростью примерно 14 тактов в минуту, имел диаметр цилиндра 28 дюймов и ход поршня 72 дюйма.
Посетитель этого места (Ричард Холлидей), живущий в этом районе, сказал мне, что глубина шахты составляет около 200 футов. Он добывал шахты Каннел, которые были частью группы угольных шахт Фэрботтома (Мэри, Парк и, возможно, шахта Стаббса). Бобс входил в группу шахт Фэрботтома, в которую входили шахты Фэрботтом / мостовая яма / коперы (позже лесной парк) и карьер Бардсли … все это были угольные шахты в средних угольных разрезах, единственная, кто выжил в 20-м веке, был лесной шахтой который закрылся в 1957 году и имел глубину 510 ярдов.Сегодня (2008 г.) местность изображена ниже (Фото Ричарда). Ясно показаны 2 вала с заглушками и основание дымохода.
Можно предположить, что Fairbottom Bobs был двухступенчатым насосом из-за расположения угольных пластов — шахты будут перекачиваться в домик в шахте Park / Stubbs в первом подъемнике, а затем на поверхность во втором подъемнике, как Fairbottom был самым нижним и последним пластом, который нужно было обработать в этом районе.
Рядом с районом Бобса была яма под названием Роше-Вейл, в которой также была ранняя балочная машина, а в районе вокруг Боба есть 15 старых шахт, возможно, намного больше.Девяносто процентов этих шахт представляли собой шахты с одной шахтой, вырытые до 1800 года, и на руднике Бобса некоторые из них использовались как воздушные шахты. Также сообщалось, что примерно в 50 футах к западу от стволов, показанных на сегодняшней фотографии местности (сделанной в 2008 году), в русле реки есть несколько струй ржавой воды, хлынувшей через трещины в нижележащих горных породах, когда затопленные угольные выработки находятся на большей высоте, и вода находится под большим давлением… окрашивая реку в оранжевый цвет.
Показанный здесь двигатель имел выходную мощность примерно 14.9 кВт (20 л.
Томас Ньюкомен и паровой двигатель
Атмосферный двигатель Thomas Newcomen
26 (а может быть, также 24) 1664 года родился английский изобретатель Томас Ньюкомен , который создал первую практическую паровую машину для перекачивания воды — паровую машину Ньюкомена.
Паровые двигатели
Как мы знаем из предыдущей статьи о Джеймсе Ватте и революции Steam Age [5], Ватт был первым, кто усовершенствовал двигатель Ньюкомена в 18 и 19 веках. Поскольку знания о силе работы с паром существовали некоторое время, можно предположить, что Ньюкомен не был первым, кто придумал идею создания парового двигателя. И действительно, предыдущими инженерами, работавшими над подобным двигателем, были, например, итальянский физик Джамбаттиста делла Порта около 1600 года и, что более важно, французский физик Дени Папен в конце 17 века и английский новатор Томас Савери.[6] Папен построил модель цилиндра и поршня, в которой пар пропускался под поршень, чтобы двигать его вверх. [1] Савери запатентовал свою идею использования вакуума для забора воды в 1698 году. Он создал самый эффективный двигатель, но трубы часто рвались, и сила, доступная для подачи и подъема воды в сосуды, была очень ограниченной.
Обезвоживание шахт
Что касается самого Томаса Ньюкомена, почему он был так мотивирован построить паровой двигатель, выкачивающий воду из шахт? Ньюкомен родился в Дартмуте, Девон, в начале 1660-х годов.Он зарекомендовал себя как хорошо известный торговец скобяными изделиями, и к его большой клиентской базе принадлежало несколько владельцев шахт. Продвижение этих шахт на все большие глубины потребовало создания эффективных машин для откачки проникающих грунтовых вод. В то время рабочие постоянно убирали воду ведрами, лошадьми и веревками, что было слишком медленно и дорого. Начиная с XIV века в горной промышленности применялись специальные водоподъемные машины. Вначале эти машины приводились в движение силой человеческих мускулов, позже — лошадьми с помощью конных пушек.
Двигатель Newcomen
Обычные двигатели того времени использовали конденсированный пар для создания вакуума, однако двигатель Томаса Сэвери использовал вакуум для подъема воды. Когда ему предложили создать систему против затопления мин, он сразу же начал экспериментировать, на что ушло почти целое десятилетие. Ньюкомен объединил преимущества предыдущих двигателей, особенно устройств Савери и Папина, и добавил свой собственный, создав двигатель, развивающий пять лошадиных сил.Его машина использовала впрыск воды для охлаждения и конденсации водяного пара в цилиндре. Это создавало вакуум в камере цилиндра, так что давление воздуха, действующее на поршень извне, или нормальное давление внешнего воздуха толкало его обратно в цилиндр. Машины, использовавшиеся до этого, просто ждали конденсации до тех пор, пока объемное содержимое камеры цилиндра не остынет само по себе за счет материала поршня и цилиндра в качестве проводника тепла — из-за более холодного внешнего воздуха — изобретение Ньюкомена, таким образом, позволило значительно увеличить количество циклов поршня.
Партнерство с Savery
Первая машина Newcomen была установлена в угольной шахте Стаффордшира в 1712 году. Она работала без коленчатого вала и маховика через балансир на насосах, которые должны были приводиться в действие. Связь поршня с балансиром осуществлялась цепью. Эффективность машины составляла всего 0,5 процента. Новый двигатель, самый эффективный на тот момент, собирался коммерциализировать его идею, но ему пришлось привлечь Савери в партнерство, поскольку он использовал некоторые из своих запатентованных технологий.Двигатель Ньюкомена получил широкое распространение, но он получил лишь небольшую прибыль, и после того, как улучшенная машина Ватта была распространена, двигатели Ньюкомена с годами становились все более редкими. Однако Ньюкомен был первым, кто создал успешный паровой двигатель, выкачивающий воду из опасных умов и установивший важные стандарты для инженерной мысли будущего во время промышленной революции.
Поздняя жизнь Ньюкомена
О дальнейшей жизни Ньюкомена известно сравнительно немного. После 1715 года работа с двигателями велась через некорпоративную компанию « владельцев изобретения для подъема воды с помощью огня ».Это общество сформировало компанию, которая имела монополию на поставку лекарств для ВМФ, обеспечивая тесную связь с Savery. Ньюкомен умер в доме Валлина в 1729 году. К 1733 году Ньюкомен и другие компании установили около 125 двигателей Ньюкомена, работающих по патенту Савери, в большинстве важных горнодобывающих районов Великобритании и на Европейском континенте: осушение угольных шахт в Черной стране , Уорикшир и близ Ньюкасл-апон-Тайн; на оловянных и медных рудниках в Корнуолле; и в свинцовых рудниках во Флинтшире и Дербишире, среди других мест.
Ньюкомен против Ватта
Двигатель Ньюкомена отнюдь не был эффективным механизмом, хотя, вероятно, он был настолько сложен, насколько могли поддерживать инженерные и материальные технологии начала 18 века. При конденсации пара терялось много тепла, так как это охлаждало цилиндр. Это не имело особого значения для шахты, где имелся малодоступный малодоступный уголь (слабина), но значительно увеличивало затраты на добычу там, где уголь был недоступен. Двигатель Ньюкомена был постепенно заменен после 1775 года в регионах, где уголь был дорогим, на усовершенствованную конструкцию, изобретенную Джеймсом Ваттом, в которой пар конденсировался в отдельном конденсаторе.Несмотря на усовершенствования Ватта, Common Engines (как они тогда назывались) продолжали использоваться в течение значительного времени, и даже в период действия патента Watt было построено гораздо больше двигателей Newcomen, чем Watt, поскольку они были дешевле и менее сложны. Из более чем 2200 двигателей, построенных в 18 веке, только около 450 были ваттными двигателями.
Ссылки и дополнительная литература:
- [1] Клоостер, Джон У. (2009). Иконы изобретательства: создатели современного мира от Гутенберга до Гейтса.Иконы на изобретения: 25 — 52
- [2] Томас Ньюкомен в Britannica Online
- [3] Общество Ньюкоменов
- [4] Паровые двигатели Мэтью Бултона и Джеймса Ватта, SciHi Blog, 17 августа 2017 г.
- [5] Джеймс Ватт и революция в эпоху Steam, SciHi Blog, 5 января 2018 г.
- [6] Денис Папин и скороварка, SciHi Blog, 22 августа 2015 г.
- [7] «Ньюкомен, Томас». Национальный биографический словарь . Лондон: Smith, Elder & Co.1885–1900 гг.
- [8] Томас Ньюкомен, Викиданные
- [9] Хронология развития технологии Steam Age, через DBpedia и Wikidata
Newcomen атмосферный двигатель | Коллекция Музея науки
Двигатель Newcomen, построенный Фрэнсисом Томпсоном из Ашовера около Честерфилда в 1791 году. Восстановленный в доме, построенном из материалов, взятых из машинного отделения в Пентрихе, Дербишир, где он работал в последний раз.
Томас Ньюкомен был первым человеком, который разработал практичный паровой двигатель, и с его успехом стал доступен искусственный источник огромной энергии, который заменил неопределенную силу ветра, воды и животных.Его изобретение больше, чем любое другое, превратило неуклонный прогресс промышленного прогресса в промышленную революцию, сделав возможным осушение глубоких шахт и полную эксплуатацию минеральных богатств Западной Европы. В эпоху без станков и надежных металлов Ньюкомен преуспел, потому что он понимал, что должен создать двигатель, исходя из доступных материалов и навыков. Его двигатели были построены как дома, их цилиндры были отлиты создателями пушек, а их котлы, как котлы, производили пар с давлением чуть выше атмосферного.
Пар конденсировался внутри перевернутого цилиндра, создавая таким образом частичный вакуум, и именно давление атмосферы заставляло поршень опускаться и через качающуюся балку поднимало тяжелые насосные штоки, висящие внутри шахты. Таким образом, цилиндр подвергался внешнему давлению и возможность его разрыва была исключена.
Теория двигателя Ньюкомена вытекает непосредственно из экспериментов ученых семнадцатого века.Его строительство зависело от более старых навыков плотника, каменщика, кузнеца и других. Первый двигатель был установлен недалеко от Дадли в 1712 году. Двигатель Музея науки является поздним примером, что можно увидеть по использованию чугуна для балки, ранее сделанной из дерева с деталями из кованого железа.
.