Схема пусковое устройство для автомобиля портативное: 403 — Доступ запрещён – Пусковое устройство для автомобиля своими руками: 4 работающие схемы пзу

Обзор пускового устройства «Автостарт», разбор и испытание / Даджет corporate blog / Habr

Представилась тут возможность выполнить обзор компактного пускового устройства «Автостарт». Называя понятным языком: портативный аккумулятор, power bank. Позволяет зарядить телефон/планшет, и при острой необходимости завести двигатель автомобиля.

Поставляется в аккуратной «подарочной» коробке, и в комплект поставки входит, помимо самого устройства, три разных кабеля: кабель зарядки банка от прикуривателя авто, кабель зарядки авто от разъема банка, и кабель для питания USB периферии.

Начнем издалека, с кабеля прикуривателя. Используются провода 10 AWG в силиконовой изоляции, гибкие и мощные, провода такого типа активно используются моделистами в электрических авиа-авто моделях. В данном случае 10 AWG это 5.26 мм² меди, что позволяет проводить 333А на интервалах вплоть ≈10 секунд.

На проводах висят два «черных ящика», и будет логичным их изучить.

Black box на плюсовом проводе: сборка диодов Шоттки 42CTQ030. Каждый корпус — это два диода, суммарный рекомендуемый ток на один корпус до 40А при продолжительной работе, или 1100А в импульсе 3 мкс. В данном случае установлено 3 корпуса, это 120А постоянно, или 3300А в импульсе. Следует понимать, что продолжительное использование под такими токами не предполагается, поэтому теплоотвода нет.

Black box на минусовом проводе: предохранитель, без маркировки. Более детальное обследование привело к следам чеканки на контакте под одной из паек. Под проводом и слоем припоя скрывается цифра 200А. Это ток перегорания при сравнительно продолжительной работе — протекающий ток должен успеть разогреть проводник, время разогрева определяется током в цепи, ну а ток — сопротивлением. Внутреннее сопротивление современных литий-полимерных аккумуляторов измеряется единицами мОм, условно ≈1 мОм на ячейку, в данном случае используется три ячейки. Сопротивление провода ≈3.27 мОм на метр, в данном случае это дает ≈1.5 мОм (~40 см проводов). Сопротивление диодов — 6.76 мОм на сборку, при параллельном соединении трех получается 2.25 мОм. Суммарное сопротивление 6.75 мОм, что дает ток короткого замыкания 1777А. На практике такой ток уничтожит аккумулятор (нагрев, газообразование, воспламенение), поэтому предохранитель тут совсем не лишний.

Со стороны, подключаемой к Power Bank, на проводе распаян разъем EC5, знакомый моделистам, и с допустимым продолжительным током более 120 А. Верхний предел на этот разъем мне найти не удалось, но на форумах фигурируют цифры в 210А@12V при продолжительной работе.

Со стороны аккумулятора автомобиля распаяны два крокодила. Не нашел слабых мест, провода везде распаяны и обжаты надежно, нареканий нет.

Перейдем к главному объекту исследования. Кирпичик с синей крышкой, размером со среднестатистический смартфон. В области разъемов четырех секционный индикатор, отображающий заряд аккумулятора, с фронтальной части силовой (EC5) разъем для передачи энергии свинцовому аккумулятору авто, цилиндрический разъем для зарядки от прикуривателя (14 в), светодиод фонарика, micro-USB для зарядки от ПК, USB type A для передачи энергии в произвольную периферию. С одной из боковых сторон единственная кнопка, кнопка включения.

Будучи в выключенном состоянии, на силовых клеммах присутствует напряжение аккумулятора, и тут возникает первое тревожное замечание. По-хорошему, нужна пластиковая/силиконовая заглушка, чтобы в рюкзаке/кармане разъем не был случайно замкнут, потому как внутри прибора предохранителей нет, и в таком случае устройство может хорошо отжечь. Литий полимерные аккумуляторы с большими разрядными токами при замыкании хорошо горят, доказательств на YouTube можно найти сотни.

Корпус состоит из двух частей, условно «поддон» и «крышка», детали склеены между собой по периметру, и вскрытие такого корпуса без серьезной необходимости проводить не рекомендуется — однозначно будет испорчен товарный вид, однозначно потеряна гарантия, прочность и надежность тоже не станут выше.

Но меня интересует обзор внутреннего содержимого: устройство прибора, схемотехника зарядного устройства, характеристики DC/DC преобразователей, схемы защиты, схемы контроля и измерения заряда. Все это потребует некоторых жертв.

Для тех, кому потребуется разобрать данный корпус — будьте осторожнее, не повредите батарею при использовании острых инструментов при вскрытии — неаккуратное проникновение в корпус на глубину более 2мм может прорезать тонкую оболочку батареи и закоротить внутренние ламели. Это может оказаться фатальным.

Отлично, вскрытие показало, что пациент не умер в результате вскрытия, можно продолжать обзор. Две трети прибора занимает аккумулятор, состоящий из трех последовательно соединенных элементов, все остальное пространство отведено под электронику. Аккумулятор без опознавательных знаков, с электроникой все прозрачнее.

Разберемся с электроникой. Плата контроллера заряда. Двусторонний монтаж, четырехслойный дизайн, плотно и компактно расставленные компоненты. Попробуем восстановить структурную схему.

Лицевая сторона:

Квадратный MP26123 (QFN16): зарядное устройство, принимает на вход до 24 вольт, заряжает батареи из 2 или 3 элементов. Фактически, это импульсный DC/DC преобразователь, с регулируемым током заряда, с обратной связью по току и по напряжению (пока напряжение на аккумуляторе ниже 12.6V — зарядка производится током, как только напряжение достигло установки — зарядка продолжается напряжением). Рабочее решение.

Прямоугольный S-8254A (16-pin TSSOP): монитор батареи, контролирует напряжения на всех ячейках батареи (переразряд, перезаряд), контролирует токи (отключение нагрузки при превышении тока).

Дроссель с маркировкой 4R7 и диод Шоттки SS14 рядом с micro USB принадлежит повышающему преобразователю 5V → 14V, который позволяет заряжать power bank от USB. И по мелочам: кнопка включения, рядом с ней токовый шунт, для отслеживания отдаваемого тока, разъем USB, по которому собственно и производится отдача тока, разъем microUSB для зарядки банка от 5V, светодиод фонарика, и разъем для цилиндрического штекера, для зарядки банка от 14V.

Обратная сторона:

Дроссель с маркировкой 4R7 и диод Шоттки SS14 принадлежит зарядному устройству.
Восьминогий жук в корпусе SO-8 – сдвоенный P-FET AM4915P, для отключения нагрузки в случае превышения потребляемого тока, и для отключения контроллера в случае глубокого разряда аккумулятора.

Трехногий HT7550-1 – low drop out linear regulator. Регулятор для питания контроллера.
Контроллер рядом, в корпусе SO-14, без маркировки, один из множества китайских микроконтроллеров, способный включить, выключить и помигать светодиодами.

Дроссель с маркировкой 2R2 и восьминогий жук рядом – DC/DC преобразователь из 12V в 5V
Шестиногий мелкий в центре — StepUP, повышающий с 5V до 14V для зарядки от microUSB.

Итак, есть защита от переразряда аккумулятора, от короткого замыкания по линии 5V, есть зарядка от 5 вольт, от 14 вольт, есть контроллер, измеряющий уровень заряда, индицирующий его на группу светодиодов, есть фонарик, и все это вполне аккуратно упаковано на плату 20x30мм.

Есть незначительное нарекание. Чтобы его озвучить, нужен экскурс в отдельную тему.
Существует класс т.н. «интеллектуальных» зарядных устройств, хорошо знакомый моделистам — это практически все зарядные устройства для литий-полимерных батарей с балансировочными разъемами. Их интеллектуальность заключается в контроле напряжений на каждом элементе батареи и выравнивании этих напряжений.

Достаточно важный момент, поскольку при незначительном недозаряде/перезаряде элементов при последующей работе под большой нагрузкой возникнет так называемая «разбалансировка», т.е. какие-то элементы батареи будут разряжаться быстрее своих «собратьев», что начнет вызывать их деградацию, и последующую смерть.
Полностью избавиться от дисбаланса нельзя, каждый элемент индивидуален, и обладает своим внутренним сопротивлением, своей емкостью.

Поэтому единственный вариант решить проблему — выравнивать напряжения в батарее при каждой зарядке.
Зарядное устройство отслеживает и устраняет этот дисбаланс при каждой зарядке, что позволяет увеличить жизнь батарей.

Так вот, в данном случае балансировочной схемы я не увидел. Как я понимаю, Power Bank это не то изделие, куда производитель будет ставить еще ≈20 элементов, выполняющих балансировку. Но в данном случае данная схема была бы полезна.

В целом плата собрана на современных компонентах, все импульсные преобразователи работают на частоте 1МГц (только зарядное устройство на 600 КГц, но ему можно), и качество сборки нареканий не вызывает.

Следующая часть обзора. Аккумулятор.

Что меня заинтересовало, так это то, что на задней стенке банка впечатаны характеристики: 6000 мАч / 22 Вт*ч. И тут кроется первая странность. Из физики P[Ватт] = I[Ампер]*U[Вольт].
«Стандартным» напряжением на аккумуляторе из 3 элементов принято 11.1 вольт.
22 Вт / 11,1 Вольт ≈ 2000 мА
Хм, 2000 мАч не похоже на 6000 мАч, даже с округлениями. А что стоит в действительности?

Проверять буду на зарядном устройстве Hyperion EOS 0606i. Подпаиваю к аккумулятору балансировочный разъем, заряжаю с балансировкой и запускаю разряд током 300 мА. По результатам теста аккумулятор показывает емкость ≈2000 мАч.

Единственная догадка, которая возникает в голове — это что 6000 мАч, указанные производителем, являются «приведенными» к напряжению 3.7 вольта. Т.е. если в вашем телефоне стоит аккумулятор 2000 мАч, то, теоретически, этим банком вы сможете зарядиться 3 раза. На практике есть потери в DC/DC преобразователях, которые ухудшат результат, но в целом логика производителя ясна.

Итак, с устройством устройства все ясно, переходим к следующей части. Тесты прибора.

Питание нагрузки по линии 5V

Для проверки схемы защиты от перегрузок и от переразряда был собран имитатор нагрузки из серии параллельно собранных резисторов 16Ω 10W и амперметра. Стабильная работа наблюдалась при токе вплоть до 2.3А (8 резисторов), температура на дросселе при этом достигла 66С°, температура на микросхеме DC/DC контроллера 80С°, напряжение на выходе преобразователя просело до 4.6V. При превышении тока более 2,4A, монитор питания стабильно отключает DC/DC преобразователь. В процессе разряда микроконтроллер гасит светодиоды индикатора в соответствии с остаточной емкостью батареи. При напряжении на аккумуляторе 9.6V (3.2V) контроллер отключает нагрузку. Все в пределах нормы, хотя, остаточные 3.2V на элемент это маловато.

Зарядка от 14 вольт

Для проверки использовал регулируемый источник питания. Зарядка полностью разряженного банка возможна от напряжения 12V, но выше входного напряжения, в таком случае, зарядиться не получится. Да, это не SEPIC. В целом, зарядка аккумулятора ведется током 1А, вне зависимости от входного напряжения, и продолжается, в среднем, в течение двух часов. В диапазоне от 12 до 20 вольт проблем с работой обнаружено не было. Во время зарядки светящиеся индикаторы отображают текущий уровень заряда, а мигающий оповещает о самом процессе, постепенно, по мере заряда, перемещаясь по кругу. За все время зарядки выполняется один оборот.

Как вариант повышения юзабилити – менять скважность вспышек по мере заряда.
0% — короткие вспышки первого диода, все остальные погашены;
99% — длинные вспышки последнего диода, все остальные включены.

Зарядка от 5 вольт

В данном случае в работу включается step-up DC/DC преобразователь, который повышает с 5 до 14 вольт, и подает это напряжение на разъем 14В. Да, во время зарядки от micro USB на цилиндрическом разъеме присутствует напряжение. Работает даже от 2V, потребляемый ток при этом 200 мА, понятно, что зарядка в таком случае будет длиться в 30 раз дольше, но, тем не менее, сама возможность заряжаться хоть от «картофельной батарейки» радует.

На честных 5 вольтах преобразователь начинает потреблять 2А, разогревается до 80 градусов, но, тем не менее, продолжает работать. В данном режиме зарядка продолжается чуть более 2 часов.

На этом, пожалуй, все

Банк выглядит достаточно надежным и законченным устройством, вполне аккуратным и продуманным. Нарекание только одно: емкость аккумулятора. Во-первых, в среде моделистов принято писать действительную емкость, а не приведенную, а во-вторых, действительной емкости в данном приборе маловато.

Возможность снять с аккумулятора 11.1V напрямую, с максимальной токоотдачей тоже позитивный момент. У меня не оказалось под рукой авто с разряженным аккумулятором, но я понимаю, что «прикурить» от этого аккумулятора получится. Сторонние обзоры подтверждают.

В заключении могу порекомендовать «Автостарт» в качестве подарка – отличный внешний вид, отличная упаковка, и гарантированная работа. Подарку с такими функциями рад будет каждый.

Пусковое устройство для автомобиля — какое выбрать? — журнал За рулем

В преддверии зимнего сезона сравниваем пусковые устройства трех разных типов. Все они оказались не без греха.

Идею теста подсказало появление на рынке конденсаторного пускача для автомобилей с подсевшими батареями. Заявленный ток — аж 800 ампер! Конденсаторы не боятся морозов, их трудно вывести из строя, и они не взрываются, как литиевые аккумуляторы в смартфонах. В теории — сплошные плюсы.

Материалы по теме

На практике достоинства и недостатки приборов лучше всего выявлять в сопоставлении с им подобными. Но вот незадача, других конденсаторных устройств со столь высокими токами на момент подготовки материала никто не предлагал. Тогда возникла мысль сравнить новичка с устройствами иных типов — пускачами на основе литиевой и свинцовой батарей. Естественно, компанию подбирали с максимально близкими заявленными показателями.

Испытания проводили согласно методике ГОСТ Р 53165–2008 на аккумуляторных батареях 6СТ‑60А, подготовленных в соответствии с требованиями указанного стандарта. Все приборы были разряжены до конечного напряжения на выводах 10,5 В. Замеры проводили при температурах +20 и —20 ºС. Каждое устройство предварительно потренировали циклами заряд/разряд, после чего зарядили под завязку.

До начала испытаний казалось, что победитель известен. Действительно, как аккумуляторам тягаться с конденсатором, тем более на морозе? Но всё получилось иначе.

Berkut Specialist JSC-800 (автомобильное зарядное устройство конденсаторного типа)

Berkut Specialist JSC-800 (автомобильное зарядное устройство конденсаторного типа)

Источник энергии конденсатор

Заявленный пусковой/пиковый ток 800 А/не указан

Заявленное время пуска не указано

Заявленный интервал между пусками не более одного пуска

Температурный диапазон —40...+65 ºС

Самое перспективное, на первый взгляд, устройство не порадовало: выдать заявленные токи оказалось ему не по силам. Укажи разработчики более скромные показатели, спрос был бы другим. Впрочем, снизилась бы при этом запредельная цена? Из достоинств выделим силовые провода, не утратившие эластичности на морозе.

Jumpstart SH-309B (устройство пусковое переносное)

Jumpstart SH-309B (устройство пусковое переносное)


Портативное автомобильное пусковое устройство iMars J01

Всем привет! Недавно публиковал акцию на данную модель, но из-за невнимательности ввел часть читателей в заблуждение по поводу рабочего напряжения, т.к. не заметил лишний балансировочный провод, так что решил исправиться, заодно и написать об устройстве подробнее. А еще в данный момент они есть в RU складе и с купоном ценник опускается до $33.99 с учетом быстрой доставки. С поинтами еще дешевле($29.59).


Характеристики


Производитель: iMars
Модель: J01
Емкость: 13800мАч
Ток нагрузки: 500A
Пиковый ток нагрузки: 1000A
Вход microUSB: 5В 1.6A
USB выходы: 5В 2.1A
Overload Protection: ≦ 13В ± 0.3В
Rear Load Protection: ≧ 12.6В ± 0.3В
Фонарик: Обычный режим, SOS, Стробоскоп)
Индикация заряда: Есть
Размеры: 155*88*34мм
Вес: 350г
Рабочая температура: -20℃~+70℃
Влагозащита: IP66
Защита платы: 8 типов защит
Сертификация: CE / FCC / RoHs/ UL Certified / UN38.3

Распаковка и внешний вид


Пакет не фотографировал, так что сразу коробка

С обратной стороны

Отсеки разделены картонкой, со временем всё это дело мнется, рвется, так что таскать долго в ней не получится

В комплекте основной модуль, «крокодилы» с коробочкой защиты, макулатурка и microUSB шнурок для зарядки

Сверху расположен индикатор зарядка и одна кнопка для его активации/включение фонарика

Снизу продублированы характеристики

На передней грани разместили 7мм светодиод с рассеивающей линзой

Думал будет хуже светить, но для подкапотного пространства ночью хватит вполне

Под резиновой заглушкой разъем для подключения силовых проводов, USB выход и гнездо microUSB для зарядки

Блок защиты силовых проводов от переплюсовки и перегрузки. Есть кнопка принудительной активации

На выходе 16В, а значит внутри сборка аккумуляторов 4S, а не 3S как я писал в акции

Клещи на вид нормальные, между собой случайно замкнуть не получится

Контактные площадки соединены друг с другом

Функционал


В обычной ситуации достаточно подключить силовые провода к сабжу, крокодилы накинуть на аккумулятор, либо клеммы автомобиля и можно заводить, автоматика сама отработает как положено, но если аккумулятор совсем сел, необходимо зажать кнопку в нижней части блока защиты пока не услышим щелчок реле и писк, сигнализирующий о включении подачи напряжения.
В акции я обозвал данное устройство пуско-зарядным и это многим не понравилось, тем не менее без скидывания клемм я всегда оставляю модуль подключенным на несколько минут перед тем как пробовать заводить двигатель. Дело в том, что даже не сильно севший аккумулятор будет нагружать цепь, в моем случае ВАЗ 2111 кушал 10 Ампер и это без включения зажигания, но спустя несколько минут ток заметно падает, да и аккумулятор успевает малость освежиться, что упрощает дальнейшие мучения стартером.

А если аккумулятор совсем помрет, ток прыгает выше 30А и держится на высоком уровне довольно долго, зато через 10 минут можно отключить сабж и заводить как обычно. Как по мне, вполне похоже на режим зарядки, такой Квик Чардж для автомобиля )

На всех автомобилях токовые клещи зашкаливают за свой потолок 600А, но что-то мне подсказывает, что это происходит из-за специфики потребления стартером, когда щетки питаю катушку на довольно низкой частоте, создавая резкие выбросы. Ну это очень грубо говоря, кто в теме — поправьте в комментариях )
Гифки не очень показательны, поэтому снял два коротких видео с тестированием на ВАЗе и Газели

Что касается USB выхода, он спокойно держит ток до 2.5А, после чего уходит в защиту

Заявленные 13800мАч емкости приведены к 3.7В, соответственно, при прямом подключении для 16В будет примерно 3500мАч. После полного разряда зарядка занимает около 10 часов током 1.5-1.8А.
После обзора denn333 провел и у себя тестирование емкости, действительно, сабж выдает около 30Втч вместо 50.

Внутренний мир


Корпус на шурупах, разбирается легко

Если присмотреться, видно 4 балансировочных провода, маркировку элементов видно хорошо

В модуле защиты нет предохранителя как в старых версиях, вместо этого установлена полноценная плата

Реле слабовато, но за всё время заведено с десяток автомобилей и пока ничего не сгорело

Итоги


Кто-то говорит, что использование подобных устройств не практично, кому-то они кажутся удобной альтернативой как для «прикуривания» севшего аккумулятора, так и питания не очень мощных потребителей вроде пылесоса, насоса, выносной фары и т.д.
К силовой части конечно есть вопросы, как не плавятся провода, почему не сгорают контакты реле, учитывая токи, протекающие при активации стартера, насколько хватит ресурса аккумуляторов в таких условиях эксплуатации? Я не знаю, эта штука просто работает и с осени выручила несколько человек, так что свое существование пока оправдывает.

Джамперы — сравнительный тест — журнал За рулем

Проверяем автономные пусковые устройства с литиевыми батареями. На испытаниях побывали семь устройств.

Материалы по теме

Литиевые пусковые устройства, или джамперы, дорожают на глазах. Не каждый решится выложить пятизначную сумму за симпатичную коробочку с аварийным запасом электричества, который неизвестно когда понадобится. И вопрос «Не проще ли купить новую батарею?» на этом фоне уже не кажется смешным. Впрочем, мы всегда отмечали, что автономное пусковое устройство — это не замена штатной аккумуляторной батарее, а палочка-выручалочка на крайний случай. Например, когда вдали от цивилизации аккумулятор полностью разряжается, в магазин не побежишь. Кроме того, такая выручалочка может помочь не одному, а многим.

В общем, в нынешней экономической ситуации мы считаем эти устройства полезными, а потому испытали семь изделий (отчеты — в алфавитном порядке).

Больше других нам понравился пускач Airline АРВ‑14–04. Выбрать победителя было несложно: достаточно взглянуть на итоговую таблицу. Для наглядности вместо цифр мы использовали цвет — как в светофоре. Так вот, «зеленая волна» наблюдается только у одного устройства, которое при этом оказалось одним из самых дешевых.

И напоследок открою маленький секрет: ближайшие аналогичные испытания мы проведем с совсем другими пускачами, лития в них не будет.

МЕТОДИКА ИСПЫТАНИЙ

Предварительно заряженные устройства тестировали на аккумуляторах 6СТ‑60 А, разряженных согласно ГОСТ Р 53165–2008 на 100% (до конечного напряжения 10,5 В на выводах в конце разряда). Заявленные пусковой и пиковый токи проверяли при положительных (+20 ºC) и отрицательных (-20о, и —30 ºC) температурах. Замеры пускового тока при каждой температуре проводили трижды, с интервалом 60 секунд; длительность разряда — 5 секунд. Пиковый ток проверяли один раз, разряд длился 3 секунды. При всех замерах фиксировалось напряжение на первой и последней секундах каждого разряда. В ходе тестов при минусовых температурах охлаждали только пусковое устройство, при этом температуру электролита разряженного аккумулятора поддерживали положительной. Падение напряжения на клеммах ниже 6,0 В приравнивалось к отказу устройства. Дополнительно оценивали термостойкость испытываемых изделий.

НАШИ СОВЕТЫ

Очередные испытания пускачей отчасти спровоцированы тремя обстоятельствами. Как следствие — три наших совета.

Первое обстоятельство выявил наш техцентр. Некоторые пускачи в реальной жизни вдруг отказывались крутить стартеры, пока их минусовой провод не подключали непосредственно к «массе» двигателя. К сожалению, длина проводов у всех подобных устройств настолько мала, что воспользоваться этим советом можно далеко не всегда. Но если такая возможность есть — действуйте именно так, хуже точно не будет.

Второе обстоятельство — из области страшилок. С недавних пор все устройства с литийсодержащими батарейками оказалис

Author:

Отправить ответ

avatar
  Подписаться  
Уведомление о