Резисторы для светодиодов в автомобиль – варианты подключения диода к аккумулятору в авто, какой нужен для этого резистор, схема включения

Содержание

Подключение светодиода к 12 вольтам в машине (расчет сопротивления) 📹

 Светодиоды - это современные, экономичные, надежные радиоэлементы, применяемые для световой индикации. Мы думаем об этом знает каждый и все! Именно исходя из этого опыта, столь высоко желание применить именно светодиоды, для конструирования самых различных электрических схем, как в бытовой электронике, так и для автомобиля. Но здесь возникают определенный трудности. Ведь самые распространенные светодиоды имеют напряжение питания 3…3,3 вольта, а бортовое напряжение автомобиля в номинале 12 вольт, при этом порой поднимается и до 14 вольт. Само собой здесь всплывает закономерное предположение, что для подключения светодиодов к 12 вольтовой сети машины, необходимо будет понизить напряжение. Именно этой теме, подключению светодиода к бортовой сети автомобиля и понижению напряжения, будет посвящена статья.

Два основных принципа о том как можно подключить светодиод к 12 вольтам или понизить напряжение на нагрузке

 Прежде, чем перейти к конкретным схемам и их описаниям, хотелось бы сказать о двух принципиально разных, но возможных вариантах подключения светодиода к 12 вольтовой сети.

  Первый, это когда напряжение падает за счет того, что последовательно светодиоду подключается дополнительное сопротивление потребителя, в качестве которого выступает микросхема-стабилизатор напряжения. В этом случае определенная часть напряжения теряется в микросхеме, превращаясь в тепло. А значит вторая, оставшаяся, достается непосредственно нашему потребителю - светодиоду. Из-за этого он и не сгорает, так как не все суммарное напряжение проходит через него, а только часть. Плюсом применения микросхемы является тот факт, что она способна в автоматическом режиме поддерживать заданное напряжение. Однако есть и минусы. У вас не получиться снизить напряжение ниже уровня, на которое она рассчитана. Второе. Так как микросхема обладает определенным КПД, то падение относительно входа и выхода будет отличаться на 1-1,5 вольта в меньшую сторону. Также для применения микросхемы вам необходимо будет применить хороший рассеивающий радиатор, установленный на ней. Ведь по сути тепло выделяемое от микросхемы, это и есть невостребованные нами потери. То есть то, что мы отсекли от большего потенциала, чтобы получить меньший.

 Второй вариант питания светодиода, когда напряжение ограничивается за счет резистора. Это сродни тому, если бы большую водопроводную трубы взяли бы и сузили. При этом поток (расход и давление) снизились бы в разы. В этом случае до светодиода доходит лишь часть напряжения. А значит, он также может работать без опасности быть сожженным. Минусом применения резистора будет то, что он также имеет свой КПД, то есть также тратит невостребованное напряжение в тепло. В этом случае бывает трудно установить резистор на радиатор.  В итоге, он не всегда подойдет для включения в цепь. Также минусом будет являться и то обстоятельство, что резистор не поддерживает автоматического удержания напряжение в заданном пределе. При падении напряжения в общей цепи, он подаст настолько же меньшее напряжение и на светодиод. Соответственно обратная ситуация произойдет при повышении напряжения в общей цепи.

 Конечно, тот и другой вариант не идеальны, так при работе от портативных источников энергии каждый из них будет тратить часть полезной энергии на тепло. А это актуально! Но что сделать, таков уж принцип их работы. В этом случае источник питания будет тратить часть своей энергии не на полезное действие, а на тепло. Здесь панацеей является использование широтно-импульсной модуляции, но это значительно усложняет схему… Поэтому мы все же остановимся на первых двух вариантах, которые и рассмотрим на практике.

Подключение светодиода через сопротивление к 12 вольтам в машине (через резистор)

Начнем, как и в абзаце выше, с варианта подключения светодиода к напряжению в 12 вольт через резистор. Для того чтобы вам лучше было понять как же происходит падение напряжение, мы приведем несколько вариантов. Когда к 12 вольтам подключено 3 светодиода, 2 и 1.

Подключение 1 светодиода через сопротивление к 12 вольтам в машине (через резистор)

 Итак, у нас есть светодиод. Его напряжение питания 3,3 вольта. То есть если бы мы взяли источник питания в 3,3 вольта и подключили к нему светодиод, то все было бы замечательно. Но в нашем случае наблюдается повышенное напряжение, которое не трудно посчитать по формуле.  14,5-3,3= 11,2 вольта. То есть нам необходимо первоначально снизить напряжение на 11,2 вольта, а затем лишь подать напряжение на светодиод.  Для того чтобы нам рассчитать сопротивление, необходимо знать какой ток протекает в цепи, то есть ток потребляемый светодиодом. В среднем это около 0,02 А. При желании можете посмотреть номинальный ток в даташите к светодиоду. В итоге, по закону Ома получается. R=11,2/0,02=560 Ом. Сопротивление резистора рассчитано. Ну, а уж схему нарисовать и того проще.

Мощность резистора рассчитывается по формуле  P=UI=11.2*0,02=0,224 Вт. Берем ближайший согласно стандартного типоряда.

Подключение 2 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

По аналогии с предыдущим примером все высчитывается также, но с одним условием. Так как светодиода уже два, то падение напряжения на них будет 6,6 вольта, а оставшиеся 14,5-6,6=7,9 вольта останутся резистору. Исходя из этого, схема будет следующей.

Так как ток в цепи не изменился, то мощность резистора остается без изменений.

Подключение 3 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

И еще один вариант, когда практически все напряжение гасится светодиодами. А значит, резистор по своему номиналу будет еще меньше. Всего 240 Ом. Схема подключения 3 светодиодов к бортовой сети машины прилагается.

Напоследок нам лишь осталось сказать, что при расчетах было использовано напряжение не 12, а 14,5 вольт. Именно такое повышенное напряжение обычно возникает в электросети машины, когда она заведена.
 Также не трудно прикинуть, что при подключении 4 светодиодов, вам и вовсе не потребуется применение какого либо резистора, ведь на каждый из светодиодов придется по 3,6 вольта, что вполне допустимо.

Подключение светодиода через стабилизатор напряжения к 12 вольтам в машине (через микросхему)

 Теперь перейдем к стабилизированной схеме питания светодиодов от 12 вольт. Здесь, как мы уже и говорили, существует схема, которая регулирует собственное внутреннее сопротивление. Таким образом, питание светодиода будет осуществляться устойчиво, независимо от скачков напряжения бортовой сети.  К сожалению минусом применения микросхемы является тот факт, что минимальное стабилизированное напряжение, которое возможно добиться будет 5 вольт. Именно с таким напряжением можно встретить наиболее широко известные микросхемы – стабилизаторы КР142 ЕН 5Б или иностранный аналог L7805 или L7805CV. Здесь разница лишь в производителе и номинальном рабочем токе от 1 до 1,5 А.

 Так вот, оставшееся напряжение с 5 до 3,3 вольт придется гасить все по тому же примеру что и в предыдущих случаях, то есть с помощью применения резистора. Однако снизить напряжение резистором на 1,7 вольта это уже не столь критично как на 8-9 вольт. Стабилизация напряжения в этом случае все же будет наблюдаться! Приводим схему подключения микросхемы стабилизатора.
Как видите, она очень простая. Реализовать ее может каждый. Не сложнее чем припаять тот же резистор. Единственное условие это установка радиатора, который будет отводить тепло от микросхемы. Его установить нужно обязательно. На схеме написано что микросхема может питать 10 цепочек со светодиодом, на самом деле этот параметр занижен. По факту, если через светодиод проходит около 0,02 А, то она может обеспечивать питанием до 50 светодиодов. Если вам необходимо обеспечить питание большего количества, то используйте вторую такую же независимую схему. Использование двух микросхем подключенных параллельно не правильно. Так как их характеристики немного, да будут отличаться друг от друга, из-за индивидуальных особенностей. В итоге, у одной из микросхем будет шанс перегореть намного быстрее, так как режимы работы у нее будут иные - завышенные.

 О применение аналогичных микросхем мы уже рассказывали в статье "Зарядное устройство на 5 вольт в машине". Кстати, если вы все же решитесь выполнить питание для светодиода на ШИМ, хотя это вряд ли того стоит, то эта статья также раскроет вам все секреты реализации такого проекта.

Подводя итог о подключение светодиода к 12 вольтам в машине своими руками

 Подводя итог о подключении светодиода к 12 вольтовой сети можно сказать о простоте выполнения схемотехники. Как со случаем где применяется резистор, так и с микросхемой – стабилизатором. Все это легко и просто. По крайней мере, это самое простое, что может вам встретиться в электронике. Так что осилить подключение светодиода к бортовой сети машины в 12 вольт  должен каждый и наверняка. Если уж и это не «по зубам», то за более сложное и вовсе браться не следует.

Видео по подключению светодиода к сети в автомобиле

... а теперь чтобы вам было легче прикинуть какой номинал сопротивления нужен и какой мощностью для вашего конкретного случая, можете воспользоваться калькулятором подбора резистора

Нагрузочный резистор для светодиода в автомобиль — Все о Лада Гранта

Многие любители тюнинга автомобилей предпочитают менять лампы подсветки кнопок, бардачка, багажника, салона, а зачастую и габаритных огней на светодиоды. Их преимущества очевидны: они более договечны, имеют низкое энергопотребление по сравнению с лампами накаливания при большей светоотдаче, не нагреваются как лампы.
При всем этом просто взять светодиод и установить его вместо лампы накаливания не получится. В данной статье рассмотрим, как правильно производить замену обычных ламп на светодиоды и как их правильно подключать в автомобиле.

Итак, для представления полной картины нам необходимо уяснить, что:

  • Напряжение бортовой сети автомобиля при заведенном двигателе составляет 13-14,5 В.
  • Напряжение питания светодиода – в среднем 3,5 В. Причем оно различается. Для желтых и красных цветов это 2-2,5 В; для белых, синих, зеленых – 3-3,8 В.
  • Средний ток малых светодиодов – 20 мА.
  • Контакты светодиода имеют полярность, плюс и минус. Если перепутать полярность, светодиод гореть не будет.

Соответственно, подключать светодиоды напрямую к бортовой сети автомобили нельзя, они сразу же выйдут из строя.

Как же тогда их подключать?

В продаже имеются готовые светодиодные кластеры, которые уже рассчитаны на питание в 12 В. Они обычно состоят из трех светодиодов и резистора, на котором гасится лишнее напряжение. По такому же принципу устроена и светодиодная лента, которая состоит из параллельно соединенных кластеров. Резать ее нужно только в специально отмеченных местах, которые являются местами соединения параллельных кластеров.
Правда, при снижении питающего напряжения яркость диодов будет тоже падать, а при повышении – возрастать, так что если напряжение в бортовой сети автомобиля плавает, то тоже самое будет происходить и со светом диодов.

По такому же принципу можно сделать такой кластер своими руками, соединив необходимое количество светодиодов последовательно (плюс одного к минусу другого), а получившиеся 2 вывода на концах цепочки – к бортовой сети.
Например, светодиодов, рассчитанных на напряжение 3,5 В (белые) понадобится 3 штуки (3 х 3,5 = 10,5 В). Оставшееся напряжение компенсируем резистором сопротивлением 100 – 150 Ом с мощностью рассеивания 0,5 Вт.

Вот таким образом можно включить нужное количество светодиодов, собирая их отрезками по 3 штуки с резистором, и соединяя отрезки параллельно. Где это можно применить на практике, расскажет эта статья.

Номинал гасящего резистора рассчитывается по закону Ома. Если вы с этим не знакомы, то на практике можно для бортовой сети автомобиля принять следующие номиналы сопротивлений: для одного светодиода – 500 Ом, для двух – 300 Ом, для трех, как указано выше – 150 Ом.

Для желающих освоить практический метод подбора сопротивлений для питания светодиодов в автомобиле рассмотрим его подробнее.

Для этого нам понадобится мультиметр, способный замерять напряжение и ток. Подойдет и простейший китайский. Вот как он может выглядеть:

Закон Ома для нашего участка цепи со светодиодом и резистором выглядит так: R = U/I (R – сопротивление, Ом; U- напоряжение, В; I – ток, А). Таким образом, чтобы получить требуемое сопротивление, нужно разделить напряжение, которое требуется погасить на величину тока, которую нужно получить в нашей цепи.

Возьмем для примера белый светодиод со следующими параметрами: напряжение питания – 3,5В, номинальный рабочий ток – 20 мА (или 0,02 А).

Мультиметром замеряем напряжение в точке подключения светодиода (если это габаритный огонь – то на контактах патрона лампы габарита) при заведенном двигателе, допустим мы получили 13 В.

Если мы подключаем один светодиод, то нужно вычесть из величины замеренного напряжения номинальное напряжение, на которое рассчитан светодиод (3,5 В).

Ток в нашей цепи должен не превышать 0,02А, чтобы светодиод не вышел раньше времени из строя.

Тогда величина сопротивления будет:

9,5 / 0,02 = 475 (Ом)

Чтобы наш резистор в процессе работы не сгорел от перегрева, вычисляем мощность, на которую он должен быть рассчитан. Для этого надо умножить гасимое им напряжение (9,5 В) на ток в цепи (0,02 А).

9,5 х 0,02 = 0,19 (Вт)

Берем с запасом, то есть от 0,5 до 1 Вт.

Теперь у нас есть данные резистора: не менее 475 Ом, мощность 0,5 -1 Вт, берем эти цифры и идем с ними в радиолавку.

Убедиться в правильности расчетов можно померяв ток в нашей цепи при помощи того же мультиметра. Для этого щупы мультиметра нужно включить в разрыв между резистором и светодиодом.

Он должен показать не более 0,02А, на которые рассчитан светодиод, больший рабочий ток резко сократит срок его службы.

Таким образом можно подключать и несколько светодиодов, нужно только знать рабочее напряжение светодиодов и их ток, и рассчитать номинал резистора, подставив данные в формулу выше.

Также полезно подключить к светодиоду обычный диод обратной полярностью, для защиты нашего светодиода от напряжения обратной полярности, которого он очень не любит. Необходимо для применения в отечественных авто преклонного возраста.

На сегодня все, в следующей статье рассмотрим более продвинутый способ запитывания светодиодов в автомобиле при помощи стабилизатора.

Современные автомобили, преимущественно произведенные в Европе, в бортовом компьютере оснащены системой контроля состояния ламп. Если владелец решил сменить штатные лампочки на светодиодные, он может столкнуться с некоторыми проблемами. Дело в том, что малое потребление электроэнергии светодиодными автомобильными лампами определяется компьютером как неисправность.

Что такое обманка

Такая деталь, как обманка (или резистор), позволяет решить вышеуказанную проблему. Устройство создает оптимальную нагрузку цепи током, превышающую ту, что дают светодиодные лампы для автомобилей. Другими словами, происходит имитация активного потребления электричества до порога, который расценивается системой контроля как норма, и она не срабатывает.

Конечно, многие автомобилисты уже давно оценили практичность LED-автоламп, и позаботились о том, чтобы заменить стоковые приборы на них. Однако, например, при установке освещения на светодиодах в поворотники, реле поворотов реагирует так, словно лампа перегорела. Это происходит потому, что реле рассчитано на мощность, характерную для галогеновых устройств. Специальные контроллеры для светодиодных ламп стоят немало, и обманка – отличный выход из ситуации.

Наш интернет-магазин предлагает широкий ассортимент обманок для светодиодной лампы с цоколем W5W (T10), H7, HB3 / HB4, W21/5W (7443), H8/h21/h26 и других, а также автомобильный нагрузочный резистор-обманку для указателей поворота. Продукция тщательно отобрана и прошла проверку на работоспособность.

Помимо реле существует еще одна проблема: бортовой компьютер. В транспортных средствах при подключении LED-ламп начинает мигать сигнал на приборной панели. Более продвинутые системы отключают питание или переключают ее на другие фонари (к примеру, стоп-сигнал будет перенесен на противотуманные фары).

Как установить обманку

Монтаж резистора выполняется посредством коннекторов, входящих в комплект. Они не портят провода, несмотря на то, что установка производится через небольшой разрез изолирующего материала, так обеспечивается контакт с проводником. Демонтаж происходит также просто, без каких-либо видимых следов установки.

Этапы монтирования обманок:

  • Через реле с помощью двух проводов «+» и «-» от источника питания к лампочке подается напряжение.
  • Параллельно в цепь подключается резистор. Один из его проводов коннектором соединяется с плюсом, второй – с минусом.
  • Обязательно обратить внимание на отсутствие соприкосновения обманки и пластика в машине. Во время работы резисторы греются, и пластиковые детали могут расплавиться под действием высокой температуры.
  • В результате образуется бесперебойная система, полностью соответствующая заводским характеристикам.

Технические параметры:

  • предельная рассеиваемая мощность: 18-50 Вт;

Термин «мощность» не означает потребляемую электроэнергию резистором. Это предельная рассеиваемая мощность, та энергия, которая может быть разнесена без перегрева. Обманки позволяют без особых усилий решить вопросы с подсоединением светодиодных ламп, которые дают яркий свет и обладают превосходными эксплуатационными свойствами. Качественное освещение – залог вашей безопасности в дорожном движении!

Звоните, пишите или воспользуйтесь формой обратной связи

Обманка для светодиодов T10 W5W устанавливается для предотвращения возникновения ошибки компьютера при замене штатных ламп накаливания.

Нагрузочный резистор 50w 8Ohm для светодиодных автоламп 1156 (P21W) устанавливается для предотвращения ошибки и быстрого мигания поворотников.

Нагрузочный резистор 50w 8Ohm для светодиодных автоламп h21 устанавливается для предотвращения ошибки и быстрого мигания поворотников.

Нагрузочный резистор 50w 8Ohm для светодиодных автоламп H7 устанавливается для предотвращения ошибки и быстрого мигания поворотников.

Нагрузочный резистор 25w 8Ohm для светодиодных автоламп устанавливается для предотвращения ошибки и быстрого мигания поворотников.

Нагрузочный резистор 50w 6Ohm для светодиодных автоламп устанавливается для предотвращения ошибки и быстрого мигания поворотников.

Реле указателей поворотов для светодиодных автоламп устанавливаются для предотвращения ошибки и быстрого мигания поворотников. При установке реле указателей поворота не требуется установка дополнительных нагрузочных резисторов для светодиодов.

Реле указателей поворотов для светодиодных автоламп устанавливаются для предотвращения ошибки и быстрого мигания поворотников. При установке реле указателей поворота не требуется установка дополнительных нагрузочных резисторов для светодиодов.

Реле указателей поворотов для светодиодных автоламп устанавливаются для предотвращения ошибки и быстрого мигания поворотников. При установке реле указателей поворота не требуется установка дополнительных нагрузочных резисторов для светодиодов.

Тотальный ликбез по подключению светодиодов в автомобиле

   После того, как я занялся LED-тюнингом своей верки, одним из наиболее частых вопросов, которые я слышу от заинтересованных лиц, является вопрос как я их подключил. На этот вопрос я и постараюсь ответить в данной статье.

   Начнем с того, что диоды, которые продаются у нас, можно разделить на несколько категорий:

  • Диоды с резистором, которые вы купите на авторынке, скорее всего будут рассчитаны на 12-14 вольт на входе, которые резистор понижает до номинального для диода напряжения в ~3.3 вольта и упакованы они будут в небольшой корпус, из которого будут торчать 2 ноги - плюс и минус. Но, конечно, диоды бывают разные, и перед покупкой, обязательно узнайте, подойдет ли этот диод для подключения к бортовой сети автомобиля.
  • Светодиодные ленты, которые нынче становятся все популярнее - тоже готовое решение, подключил и пользуйся. Примечательны тем, что их можно нарезать на небольшие куски и использовать там, где вам нужно.
  • И, наконец, самое бюджетное решение, которое использую я - обычные 3.3-вольтовые диоды. Их можно купить на радиорынке / в радиомагазине, а можно и еще выгодней - купить на Aliexpress. Последний раз я приобрел 500 ярких белых диодов всего за 15 баксов.

Обычные белые светодиоды

   Но как подключить такие диоды в машине? Опять же, есть несколько способов.

   Для начала развею самый популярный "светодиодный" миф: для подключения диодов обязательно нужен резистор, без него диод обязательно сгорит. Глупость это несусветная: у каждого диода, как мы уже заметили, есть такой показатель, как номинальное напряжение. Это напряжение, при котором диод будет жрать свой номинальный ток. Если напруга будет меньше - то и ток, соответственно, будет меньше, а яркость, в свою очередь, будет ниже. Так вот, если на диод приходит напряжение меньшее или равное номинальному, то никакой резистор ему не нужен! Все, миф развеян, теперь продолжим по способам подключения.

   Способ с параллельным соединением кусков по 4 или 5 последовательно подключенных диодов - это вообще бред. Ведь не стоит забывать, что напряжение в бортовой сети не всегда составляет 12 вольт, оно то просаживается до 11,8, если слушать музыку с заглушенным движком, то поднимается до 14,5, если его завести. Поэтому, если, руководствуясь этим способом, взять 4 диода - то получим на каждом 3 и 3.6 вольт на незаведенной и заведенной машине соответственно, причем если при 3х вольтах диоды будут светить довольно слабо, то при долгой подаче на них 3.6 вольт они неумолимо деградируют и, в итоге, сгорят нафиг. А если взять 5 штук, то  они вообще будут еле светить в обоих случаях. И вот, мы плавно подобрались ко второму, самому популярному способу - подключению диодов через резистор, и тут же встает вопрос: как рассчитать его мощность и сопротивление? Разберемся.

   Вспомним из уроков физики в школе закон Ома: R=U/I, что означает: сопротивление = напряжению, деленному на ток. Поэтому, зная рабочий ток каждого диода (у большинства 3,3 вольтовых образцов этот ток составляет 20 миллиампер, смотрите тех.данные у продавца), количество и способ подключение диодов в нашей сети а также планируемое напряжение на входе, мы легко можем рассчитать, каким же сопротивлением должен  обладать резистор. Например, у нас есть 7 диодов с номинальным током 20 миллиампер и напряжением 3,3 вольта. Рассчитаем для них резистор, приняв напряжение в бортовой сети = 14,5 вольтам: R=(14,5-3,3)/((7*20)/1000)=80, то бишь, грубо говоря, для такой конструкции нам нужен резистор, номиналом 80 Ом. Но лучше, на всякий случай, брать резистор номиналом чуть больше - чем меньше ток на диодах - тем дольше они проживут.

   Иногда бывает нужно параллельно соединить последовательные пары по несколько одинаковых диодов. В этом случае все считается по той же формуле, но теперь мы считаем каждую последовательную пару как один диод, напряжение  которого равно сумме напряжений образующих пару диодов, например для 7 параллельно соединенных пар последовательно соединенных диодов, представленных выше, формула будет выглядеть так: (14,5-6,6)/((7*20)/1000)=56,4.

   Далее, озадачимся вопросом: какой мощности нужно подбирать резистор? Для ответа на него берем ту же формулу, по которой считали его сопротивление, только первый знак деления меняем на знак умножения, получим мощность в ваттах. Резистор подбираем с хорошим запасом относительно этой мощности, иначе греться будет капитально.

   Но не надо думать, что резисторы - лучшее решение, ведь это далеко не так, и вот почему:

  • Яркость диодов будет меняться в зависимости от напряжения в бортовой сети. Если резистор подбирался под заведенный движок, то на незаведенном они будут тускнеть, а если под незаведенный - при заведенном будут работать на износ. Да и смотреться проседающая яркость при запуске двигателя будет совсем не солидно.
  • По мере выхода диодов из строя (а рано или поздно это начнет происходить) ток на оставшихся в живых будет увеличиваться, что естественным образом будет все быстрее и быстрее приближать момент их кончины.
  • Может быть не так просто найти резистор нужного номинала, да и еще с запасом по мощности.

   Поэтому расскажу о третьем, самом лучшем решении, которое я не только рекомендую использовать всем без исключения, но и использую сам: микросхемы - стабилизаторы напряжения (по состоянию на 2016 год есть отличный альтернативный вариант, смотрите в конце статьи).

Стабилизаторы напряжения AZ1085T-3.3

Стабилизаторы напряжения AZ1085T-3.3

   Стабилизаторов на рынке представлено множество, как отечественных, так и импортных, цены одной штуки, способной запитать все наши диоды, не превышают $1, поэтому это не только удобное и качественное, но еще и очень дешевое решение. Последнее время для своих диодных проектов я использую стабилизаторы AZ1085T-3.3. Хотя у вашего поставщика радиодеталей может и не быть конкретно этой модели - не отчаивайтесь - берите любой аналог, удостоверившись, что вы берете модель с фиксированным напряжением 3,3 вольта (3.3 в названии микрухи), т.к. бывают варианты как с другой напругой, т.к. и мо в которых напряжение подстраивается вручную, но их, в рамках данной статьи, я рассматривать не буду. Одна и та же микросхема может быть выпущена в разных корпусах. Нам нужно выбрать такой корпус, который мы бы могли без проблем прикрутить к радиатору, и корпус TO-220 идеально для этого подходит (буква T в названии выбранной мной микрухи). При покупке также стоит обратить внимание на такие параметры, как максимальный выходной ток и максимальное входное напряжение, либо спросив у продавца, либо загуглив в интернете datasheet на интересующую вас модель стабилизатора. Этот же даташит покажет нам правильную распиновку микросхемы - они могут отличаться на разных моделях.

  • Vin (input) - это вход микросхемы, его надо подключить к плюсу вашей сети.
  • Vout (output) - выход 3.3 вольта - на него вешаем диоды.
  • GND (ground) - общая земля, минусовой контакт. Обратите внимание, что на корпусе микросхемы не всегда будет земля, в случае с моими микрухами на корпусе оказался Vout.

   Итак, микросхема выбрана и куплена, теперь нужно найти для нее подходящий радиатор и прикрутить ее к нему, не забыв (желательно) смазать соприкасающиеся поверхности термопастой (КПТ-8 или любой другой, например, использующимися как термоинтерфейс между кулером и процессором). Радиатор подойдет любой и от чего угодно - главное, чтобы его размеры позволяли закрепить его в машине и не позволяли перегреваться микросхеме (тут как с видеокартой - градусов 80 - это норма, хотя желательно 50).

Стабилизаторы напряжения AZ1085T-3.3

Микросхема уже на радиаторе

   Заметьте, что контактировать с кузовом авто, на котором всегда земля, радиатор сможет лишь в том случае, если на корпусе микрухи будет земля, иначе вы ее попросту закоротите. На входе и выходе микрухи желательно повесить по небольшому конденсатору (16 вольт на вход и 6.3 на выход), от любой материнки. Схема подключения представлена во всех даташитах. Хотя я при, подключении своих диодов, конденсаторами пренебрег - и ничего: диодики все еще живые. 😉 Расположить микросхему лучше прямо рядом с диодами, то есть, если вы тянете назад 3-метровую проводку до диодов, то микруху надо подключать в самом конце, иначе за 3 метра выходные 3.3 вольта могут превратиться в 2.5 (в зависимости от используемого кабеля). Кабель от аккумулятора/выключателя до микросхемы стоит подбирать исходя из надежности его оболочки, а за большим сечением гнаться не стоит - если у вас напряжение до микрухи просядет на несколько вольт 0но и хорошо: сама микруха будет меньше греться. И, конечно же, везде, где вы подключаетесь к бортовой сети - обязательно ставьте соответствующий предохранитель!

   Плюсы данного варианта подключения:

  • Яркость диодов не зависит от напряжения в бортовой сети: разряжен у вас аккумулятор или же вы несетесь по трассе - на выходе всегда будут 3.3 вольта.
  • Т.к. все диоды у вас подключены параллельно, выход из строя любого количества из них никак не повлияет на работу остальных - напряжение ведь стабилизировано!
  • Обычно такие микросхемы не только имеют встроенную защиту от короткого замыкания, а еще и от перегрева и от превышения выходного тока.

   Как вы уже поняли - этот вариант самый качественный, стабильный и надежный. И только его я рекомендую использовать в любых проектах со светодиодами.

   P.S. А на 5-ти вольтовых стабилизаторах можно делать отличные зарядки для телефонов и прочей техники, но об этом - в другой раз.

   P.P.S. Добавлено в 2016 году: сейчас доступны недорогие импульсные dc-dc преобразователи, с помощью которых можно более выгодно в плане КПД понизить входное напряжение 0-40V до любого, например, нужного нам 3.3V. Они стоят дороже стабилизаторов, но и ток выдерживают до трёх (а то и больше) ампер. На данный момент я, зачастую, пользуюсь именно этим вариантом.

Понравился материал?

Похожие записи:

Схема и способы подключения светодиодов для автомобиля к 12 вольтам своими руками

Светодиоды для автомобиля 12 вольт представляют собой относительно новый источник освещения, который стал использоваться повсеместно не так давно. Наши соотечественники выбирают диоды из-за их эстетической красоты, а также более высокого ресурса эксплуатации. Подробнее о том, как производится подключение диодных элементов и что нужно при этом учитывать — читайте ниже.

Что необходимо учесть автолюбителю перед заменой?

Чтобы своими руками правильно, используя схему подключения, подсоединить светодиодные лампочки, в первую очередь нужно разобраться с основной информацией. Для начала нужно понимать, что 12-вольтовый моргающий автомобильный диод — это не лампа.

Подключение светодиодов к бортовой сети на 12 вольт должно производиться с учетом некоторых моментов:

  1. В первую очередь, чтобы обезопасить подключение, нужно учесть напряжение, которое присутствует в автомобильной электросети. Как правило, этот параметр составляет около 12-13 вольт при отключенном двигателе и около 13-14.5 вольт при заведенном.
  2. В среднем один яркий и мощный диод нуждается в 3.5 вольтах питания, однако данный показатель также может варьироваться в зависимости от цвета. Например, желтый либо красный мигающий светодиод для авто будет потреблять около 2.3 вольт, а белые либо синие элементы — по 3.5 вольт в среднем.
  3. В отличие от стандартных лампочек накаливания, светодиодные сборки позволяют более качественно осветить поверхность вокруг, что особенно хорошо для их установки в приборные панели.
  4. Перед покупкой следует проверить тип линзы, установленной в лампочке. Бывают узконаправленные устройства, оснащенные небольшими по размерам линзами.
  5. Вне зависимости от типа, диодные элементы на двенадцать вольт имеют как положительный вывод, так и отрицательный. Положительный контакт в данном случае, это анод, а отрицательный — катод.

Светодиоды с разными цоколями

Чтобы правильно подобрать диодные элементы на 12в, нужно ориентироваться в их разновидностях, а делятся они между собой по мощности:

  1. Маломощные устройства не имеют системы охлаждения, поэтому их ресурс эксплуатации обычно низкий. В автомобилях таких устройства есть смысл использовать только в качестве индикаторов, к примеру, включения дневных ходовых огней или при установке контроллера разряда АКБ.
  2. Мощные диоды 12в имеют более высокий ресурс эксплуатации, при правильном использовании они могут проработать до 10 лет. Нужно учитывать, что такие диодные элементы не подвергаются большим нагрузкам.
  3. Модули. Такие устройства представляют собой стальную пластину, на которую вмонтирован целый ряд диодных элементов. Цена модуля зависит от его надежности и качества производства — чем лучше качество, тем выше цена. Модули не нужно путать с китайскими лентами, поскольку их эксплуатация возможна, разве что, для подсветки контрольного щитка или бардачка.

Схема подключения диода в авто

Инструкция по подключению светодиодов

Как подключить светодиод в свой автомобиль? Какое сопротивление для светодиода нужно подобрать? Нужно ли использовать резисторы?

Ниже расскажем, как должен подключаться диодный модуль:

  1. Процедура подключения светодиодов к 12 вольтной сети начинается с расчета питания. Основным недостатком кластеров является то, что их яркость будет зависеть от изменения количества оборотов двигателя. Если обороты падают, мощность тоже будет с

Author:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *