Стабилизатор для диодов: Стабилизатор напряжения 12 Вольт для светодиодов в авто купить

Содержание

Стабилизатор для светодиодов 10W.



Артикул: 3733

Розн цена:620.00 руб

Опт цена: 490.00 руб

620.00 руб

Товар есть в наличии

Автомобильная светодиодная лампа c цоколем h2.

Описание:

Стабилизатор напряжения для светодиодов и других устройств. Максимальная возможная нагрузка на стабилизатор — 10W.

Стабилизатор напряжения сгладит скачки напряжения и существенно продлит «жизнь» светодиодам при неравномерном питании, например от бортовой сети автомобиля.

Потребляемый ток

  • Максимальная нагрузка 10W

Комплектация

  • Количество в упаковке: 1 шт.
  • Цена указана за:1 шт.

Отзывы об этом товаре:

Пока нет ни одного отзыва

Оставить свой отзыв:

Купить за 1 клик

Укажите Ваш контактный номер телефона, и наш менеджер свяжется с Вами для подтверждения заказа!

Стабилизатор для светодиодов — Статьи по автоэлектрике — Статьи

Автоэлектрик как защитить светодиоды

Думаю все, кто ставил светодиоды в машину, рано или поздно сталкивались с тем, что диоды перегорали. Это происходит из-за того, что в электропроводке исправного автомобиля напряжение «гуляет» в пределах от 11 до 15 вольт, плюс различные скачки напряжения, помехи и импульсы обратного тока. Для того, чтобы этого избежать, необходимо ставить стабилизатор тока.

Как показывает практика, лучше всего использовать микросхему LM317T.

Учтите, что Uвых находится не только на средней ножке, но и на теплоотводе.

Простейшая схема подключения данной микросхемы выглядит так:

Учтите, что наши диоды не должны потреблять в сумме больше 1,5А, иначе стабилизатор сгорит.

Оптимальная схема, конечно, посложнее и выглядит так:

Всё это дело я начал изучать тогда, когда мне пришли фары, в которых установлены два т.н. «ангельских глазика», представляющих из себя прозрачную трубку с двумя диодами у основания (довольно популярная схема, поэтому решил поделиться с Вами — вдруг пригодится). Кстати, на предыдущих фарах такие сгорели через полтора месяца. Дабы не повторять ошибок прошлого, решил я собрать по стабилизатору на каждую фару.

Задача была такая: собрать стабилизатор, чтоб на входе было 14,5В, а на выходе 12В.

Нам понадобится:

1. Микросхема LM317T — 2шт.

2. Диод 1N4007 — 2шт.

3. Конденсатор 1мкф 16В — 2шт.

4. Конденсатор 2,2мкф 16В — 2шт.

5. Плата для монтажа — 2 шт.

6. Термоусадочная трубка по размеру платы.

7. Паяльник (а лучше паяльная станция).

8. Прямые руки.

Всё это можно купить, например, в Чип и Дип или Кварц1 (в Москве).

Схема в моем случае получилась такая:

Диод 1N4007 нужен для зашиты от импульсов обратного тока, а конденсаторы для стабилизации напряжения при временном его падении в сети автомобиля (например, при моргании поворотников).

Контур справа со светодиодами это мои «ангельские глазки» — они неразборные, так что резисторы там стоят заводские.

Получилось всё это в таком виде:

Плата обтянута термоусадочной пленкой для герметизации и по краям залита клеем-герметиком (ну не любит электроника воду). Слева — разъем, чтоб подключать к диодам (стабилизатор будет находиться за пределами фары).

В общем, как ни странно, штука пока работает и, надеюсь, диодные кольца будут жить долго и счастливо =)

 И еще хочу отметить один момент, есть такие современные грузовые автомобили как JAC, очень практичные и удобные, как в обслуживании так и в эксплуатации. В ремонтном соотношении, запчасти jac очень легко заказать и приобрести. Приобретая этот автомобиль вы делаете правильный выбор.

Похожие материалы

Стабилизатор тока для светодиодов двух выводной

Все знают, что для питания светодиодов требуется стабильный ток, иначе их кристалл не выдерживает и быстро разрушается. Для этого применяют токовую стабилизацию — специальные схемы драйверов или просто резисторы. Последний метод используется чаще всего, особенно в светодиодных лентах, где на каждые 3 LED элемента ставят по одному сопротивлению. Но резисторы, справляются со своим делом стабилизации не слишком эффективно, так как во-первых греются (лишний расход энергии), а во-вторых поддерживают заданный ток в узком диапазоне напряжений — согласно закона Ома.

Представляем радиоэлемент нового поколения — компактный регулятор тока для светодиодов от OnSemi NSI45020AT1G. Его важное преимущество — он двухвыводной и миниатюрный, создан специально для управления маломощными светодиодами. Устройство выполнено в SMD корпусе SOD-123 и обеспечивает стабильный ток 20 мА в цепи, не требуя дополнительных внешних компонентов. Такое простое и надежное устройство позволяет создавать недорогие решения для управления светодиодами. Внутри него находится схема из полевого транзистора и нескольких деталей обвязки, естественно с сопутствующими радиоэлементами защиты. Что-то типа такого LED драйвера. 

Регулятор включается последовательно в цепь светодиодов, работает с максимальным рабочим напряжением 45 В, обеспечивает ток в цепи 20 мА с точностью ±10%, имеет встроенную ESD защиту, защиту от переполюсовки. При повышении температуры регулятора, выходной ток будет снижаться. Падение напряжения 0,5 В, а напряжение включения — 7,5 В.

Схемы включения стабилизатора тока LED

Для обеспечения тока в цепи больше 20 мА нужно включить параллельно несколько регуляторов (2 регулятора – ток 40 мА, 3 регулятора – ток 60 мА, 5 регуляторов — 100 мА). 

Основные характеристики регулятора NSI45020

  • Регулируемый ток 20±10% мА;
  • Максимальное напряжение анод-катод 45 В;
  • Рабочий температурный диапазон -55…+150°С;
  • Корпус SOD-123 выполненный с использованием без свинцовых технологий.

Сферы применения стабилизатора NSI45020AT1G: световые панели, декоративная подсветка, подсветка дисплеев. В автомобилях регулятор тока ставят на подсветку зеркал, приборной панели, кнопок. Также его используют в светодиодных лентах вместо обычных резисторов, что позволяет подключать LED ленты к источникам разного напряжения без потери яркости. Напряжение питания у NSI45020 до 45 В, на выходе стабильные 20 мА. Включается последовательно с цепочкой светодиодов, единственное условие: сумма падений напряжения на светодиодах должна быть меньше входного напряжения минимум на 0,7 В.

В общем деталь полезная, и если бы ещё цена на них была низкая — можно смело закупать партию и ставить вместо резисторов, на все светодиоды в приборах и конструкциях. Даташит на NSI45020 здесь

Диод. Светодиод. Стабилитрон / Хабр

Не влезай. Убьет! (с)

Постараюсь объяснить работу с диодами, светодиодами, а также стабилитронами на пальцах. Опытные электронщики могут пропустить статью, поскольку ничего нового для себя не обнаружат. Не буду вдаваться в теорию электронно-дырочной проводимости pn-перехода. Я считаю, что такой подход обучения только запутает начинающих. Это голая теория, почти не имеющая отношения к практике. Впрочем, интересующимся теорией предлагаю

эту статью

. Всем желающим добро пожаловать под кат.


Это вторая статья из цикла электроники. Рекомендую к прочтению также

первую

, которая повествует о том, что такое электрический ток и напряжение.

Диод – полупроводниковый прибор, имеющий 2 вывода для подключения. Изготавливается, упрощенно говоря, путем соединения 2х полупроводников с разным типом примеси, их называют донорной и акцепторной, n и p соответственно, поэтому диод содержит внутри pn-переход. Выводы, обычно состоящие из луженой меди, называют анод (А) и катод (К). Эти термины пошли еще со времен электронных ламп и используются в письменном виде, для обозначения направленности диода. Гораздо проще графическое обозначение. Названия выводов диода запомнятся сами собой при применении на практике.

Как я уже писал, мы не будем использовать теорию электронно-дырочной проводимости диода. Просто инкапсулируем эту теорию до черного ящика с двумя зажимами для подключения. Примерно так же программисты инкапсулируют работу со сторонними библиотеками, не вдаваясь в е… подробности их работы. Или, например, когда, пользуясь пылесосом, мы не вдаёмся в подробности, как он устроен внутри, он просто работает и нам важно одно из свойств пылесоса – сосать пыль.

Рассмотрим свойства диода, самые очевидные:

  • От анода к катоду, такое направление называется прямым, диод пропускает ток.
  • От катода к аноду, в обратном направлении, диод ток не пропускает. (Вообще-то нет. Но об этом позже.)
  • При протекании тока, в прямом направлении, на диоде падает некоторое напряжение.

Возможно эти свойства вам и так хорошо известны. Но есть некоторые дополнения. Что же считать прямым, а что обратным направлением? Прямым называют такое включение, когда на аноде напряжение больше, чем на катоде. Обратное, наоборот. Прямое и обратное включение – это условность. В реальных схемах напряжение на одном и том же диоде может меняться с прямого на обратное и наоборот.

Кремниевый диод начинает пропускать хоть какой-либо значимый ток только тогда, когда на аноде напряжение будет больше примерно на 0,65 В, чем на катоде. Нет, не так. При протекании хоть какого-либо тока, на диоде образуется падение напряжения, примерно равное 0,65 В и выше.

Напряжение 0,65 В – называют прямым падением напряжения на pn-переходе. Это лишь примерная средняя величина, она зависит от тока, температуры кристалла и технологии изготовления диода. При изменении протекающего тока, она изменяется нелинейно. Чтобы как-то обозначить эту нелинейность графически, производители снимают вольтамперные характеристики диода. В мощных высоковольтных диодах падение напряжения может быть больше в 2, 3 и т.д. раза. Это означает, что внутри диода включено несколько pn-переходов последовательно.

Для определения падения напряжения можно использовать вольтамперную характеристику (ВАХ) диода в виде графика. Иногда эти графики приводятся в дата-листах (datasheets) на реальные модели диода, но чаще их нет. На первом мне попавшемся графике ниже приведены ВАХ КД243А, хотя это не важно, они все примерно похожи.

На графике Uпр – это прямое падение напряжения на диоде. Iпр – протекающий через диод ток. График показывает какое падение напряжения на диоде будет, при протекании n-го тока. Но чаще всего в даталистах не показываются реальные ВАХ, а приводится прямое падение напряжения, указанное при определенном токе. В английской литературе падение напряжения обозначается как forward voltage.

Как применять

Падение напряжения на диоде – для нас плохая характеристика, поскольку это напряжение не совершает полезной работы и рассеивается в виде тепла на корпусе диода. Чем меньше падение, тем лучше. Обычно падение напряжения на диоде определяют исходя из тока, протекающего через диод. Например, включим диод последовательно с нагрузкой. По сути это будет защита схемы от переплюсовки, на случай, если блок питания отсоединяемый. На рисунке ниже в качестве защищаемой схемы взят резистор 47 Ом, хотя в реальности это может быть все, что угодно, например, участок большой схемы. В качестве блока питания – батарея на 12 В.

Допустим, нагрузка без диода потребляет 255 мА. В данном случае это можно посчитать по закону Ома: I= U / R = 12 / 47 = 0,255 А или 255 мА. Хотя обычно потребление сферической схемы в вакууме уже известно, хотя бы по максимальным характеристикам блока питания. Найдем на графике ВАХ, указанный выше, падение напряжения для диода КД243А при 0,255 А протекающего тока, при 25 градусах. Оно равно примерно 0,75 В. Эти 0,75 В упадут на диоде, и для питания схемы останется 12 — 0,75 = 11,25 В — иногда может и не хватить. Как бонус, можно найти мощность, в виде тепла и потерь выделяющуюся на диоде по формуле P = I * U = 0,75 * 0,255 = 0,19 Вт, где I и U – ток через диод и падение напряжения на диоде.

Что же делать, когда график ВАХ недоступен? Например, для популярного диода 1n4007 указано только прямое напряжения forward voltage 1 В при токе 1 А. Нужно и использовать это значение, либо измерить реальное падение. А если для какого-либо диода это значение не указано, то сойдет среднее 0,65 В. В реальности проще это падение напряжения измерить вольтметром в схеме, чем выискивать в графиках. Думаю, не надо объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода.

Немного про другие характеристики

В предыдущем примере, если перевернуть батарейку, я имею ввиду поменять полярность, см. нижний рисунок, ток не потечет и падение напряжения на диоде в худшем случае составит 12 В — напряжение батареи. Главное, чтобы это напряжение не превышало напряжение пробоя нашего диода, оно же обратное напряжение, оно же breakdown voltage. А также важно еще одно условие: ток в прямом направлении через диод не превышал номинальный ток диода, он же forward current. Это два основных параметра по которых выбирается диод: прямой ток и обратное напряжение.

Иногда в даталистах также указывается рассеиваемая мощность диодом или номинальная мощность (power dissipation). Если она указана, то ее нельзя превышать. Как ее посчитать, мы уже разобрались на предыдущем примере. Но если мощность не указана, тогда надо ориентироваться по току.

Говорят, что в обратном направлении ток через диод не течет, ну или почти не потечет. На самом деле через него протекает ток утечки, reverse current в английской литературе. Этот ток очень маленький, от нескольких наноампер у маломощных диодов до нескольких сот микроампер, у мощных. Также этот ток зависит от температуры и приложенного напряжения. В большинстве случаем ток утечки не играет никакой роли, например, в как в предыдущем примере, но, когда вы будете работать с наноамперами и поставите какой-либо защитный диод на входе операционного усилителя, тогда может случиться ой… Схема поведет себя совсем не так, как задумывалась.

У диодов так же есть некоторая маленькая паразитная емкость capacitance. Т.е., по сути, это конденсатор, параллельно включенный с диодом. Эту емкость надо учитывать при быстрых процессах при работе диода в схеме с десятками-сотнями мегагерц.

Также несколько слов по поводу термина «номинал». Обычно номинальные ток и напряжение обозначают, что при превышении этих параметров производитель не гарантирует работу изделия, если не сказано другое. И это для всех электронных компонентов, а не только для диода.

Что еще можно сделать

Применений диодов существует множество. Разработчики-радиоэлектронщики обычно выдумывают свои схемы из кусочков других схем, так называемых строительных кирпичиков. Вот несколько вариантов.

Например, схема защиты цифровых или аналоговых входов от перенапряжения:

Диоды в этой схеме при нормальной работе не пропускают ток. Только ток утечки. Но когда по входу возникает перенапряжение с положительной полуволной, т.е. напряжение входа становится больше чем Uпит плюс прямое падение напряжения на диоде, то верхний диод открывается и вход замыкается на шину питания. Если возникает отрицательная полуволна напряжения, то открывается нижний диод и вход замыкается на землю. В этой схеме, кстати, чем меньше утечки и емкость у диодов, тем лучше. Такие схемы защиты уже, как правило, стоят во всех современных цифровых микросхемах внутри кристалла. А внешними мощными сборками TVS-диодов защищают, например, USB порты на материнских платах.

Также из диодов можно собрать выпрямитель. Это очень распространённый тип схем и вряд ли кто-то из читателей про них не слышал. Выпрямители бывают однополупериодные, двухполупериодные и мостовые. С однополупериодным выпрямителем мы уже познакомились в нашем самом первом многострадальном примере, когда рассматривали защиту от переплюсовки. Никакими особыми плюсами не обладает, кроме плюса на батарейке. Один из самых важных минусов, который ограничивает применение схемы однополупериодного выпрямителя на практике: схема работает только с положительной полуволной напряжения. Отрицательное напряжение напрочь отсекает и ток при этом не течет. «Ну и что?», скажете вы, «Такой мощности мне будет достаточно!». Но нет, если такой выпрямитель стоит после трансформатора, то ток будет протекать только в одну сторону через обмотки трансформатора и, таким образом, трансформаторное железо будет дополнительно подмагничиваться. Трансформатор может войти в насыщение и греться намного больше положенного.

Двухполупериодные выпрямители этого недостатка лишены, но им необходим средний вывод обмотки трансформатора. Здесь при положительной полярности переменного напряжения открыт верхний диод, а при отрицательной – нижний. КПД трансформатора используется не полностью.

Мостовые схемы лишены обоих недостатков. Но теперь на пути тока включены два диода в любой момент времени: прямой диод и обратный. Падение напряжения на диодах удваивается и составляет не 0,65-1В, а в среднем 1,3-2В. С учетом этого падения считается выпрямленное напряжение.

Например, нам надо получить 18 вольт выпрямленного напряжения, какой трансформатор для этого выбрать? 18 вольт плюс падение на диодах, возьмем среднее 1,4 В, равно 19,4 В. Мы знаем из

предыдущей статьи

, что амплитудное значение переменного напряжения в корень из 2 раз больше его действующего значения. Поэтому во вторичной цепи трансформатора переменное действующее напряжение равно 19,4 / 1,41 = 13,75В. С учетом того, что напряжение в сети может гулять на 10%, а также под нагрузкой напряжение немного просядет, выберем трансформатор 230/15 В.

Мощность требуемого нам трансформатора можно посчитать от тока нагрузки. Например, мы собираемся подключать к трансформатору нагрузку в один ампер. Это если с запасом. Всегда оставляйте небольшой запас, в 20-40%. Просто по формуле мощности можно найти P = U * I = 15 * 1 = 15 ВА, где U и I – напряжение и ток вторичной обмотки. Если вторичных обмоток несколько, то их мощности складываются. Плюс потери на трансформацию, плюс запас, поэтому выберем трансформатор 20-40 ВА. Хотя часто трансформаторы продаются с указанием тока вторичных обмоток, но проверить по габаритной мощности не помешает.

После выпрямительного моста необходим сглаживающий конденсатор, на рисунке не показан. Не забывайте про него! Есть умные формулы по расчету этого конденсатора в зависимости от количества пульсаций, но порекомендую такое правило: ставить конденсатор 10000мкФ на один ампер потребления тока. Вольтаж конденсатора не меньше, чем выпрямленное без нагрузки напряжение. В данном примере можно взять конденсатор с номиналом 25В.

Диоды в этой схеме выберем на ток >=1А и обратное напряжение, с запасом, больше 19,4 В, например, 50-1000 В. Можно применить диоды Шоттки. Это те же диоды, только с очень маленьким падением напряжения, которое часто составляет десятки милливольт. Но недостаток диодов Шоттки – их не выпускают на более-менее высокие напряжения, больше 100В. Точнее с недавнего времени выпускают, но их стоимость заоблачная, а плюсы уже не так очевидны.

Светодиод

Внутри устроен совсем по другому, чем диод, но имеет те же самые свойства. Только еще и светится при протекании тока в прямом направлении.

Все отличие от диода в некоторых характеристиках. Самое важное – прямое падение напряжения. Оно гораздо больше, чем 0,65 В у обычного диода и зависит в основном от цвета светодиода. Начиная от красного, падение напряжения которого составляет в среднем 1,8 В, и заканчивая белым или синим светодиодом, падение у которых около 3,5 В. Впрочем, у невидимого спектра эти значения шире.

По сути падение напряжения здесь – минимальное напряжение зажигания диода. При меньшем напряжении, у источника питания, тока не будет и диод просто не загорится. У мощных осветительных светодиодов падение напряжения может составлять десятки вольт, но это значит лишь, что внутри кристалла много последовательно-параллельных сборок диодов.

Но сейчас поговорим об индикаторных светодиодах, как наиболее простых. Их выпускают в различных корпусах, наиболее часто в полуокруглых, диаметром 3, 5, 10 мм.

Любой диод светится в зависимости от протекающего тока. По сути это токовый прибор. Падение напряжения получается автоматически. Ток мы задаем сами. Современные индикаторные диоды более-менее начинают светиться при токе 1 мА, а при 10 мА уже выжигают глаза. Для мощных осветительных диодов надо смотреть документацию.

Применение светодиода

Имея лишь соответствующий резистор можно задать нужный ток через диод. Конечно, понадобится еще и блок питания постоянного напряжения, например, батарейка 4,5 В или любой другой БП.

Например, зададим ток 1мА через красный светодиод с падением напряжения 1,8 В.

На схеме показаны узловые потенциалы, т.е. напряжения относительно нуля. В каком направлении включать светодиод нам подскажет лучше всего мультиметр в режиме прозвонки, поскольку иногда попадаются напрочь китайские светодиоды с перепутанными ногами. При касании щупов мультиметра, в правильном направлении, светодиод должен слабо светиться.

Поскольку применен красный светодиод, то на резисторе упадет 4,5 — 1,8 = 2,7В. Это известно по второму закону Кирхгофа: сумма падений напряжения на последовательных участках схемы равно ЭДС батарейки, т.е. 2,7 + 1,8 = 4,5В. Чтобы ограничить ток в 1мА, резистор по закону Ома должен обладать сопротивлением R = U / I = 2,7 / 0,001 = 2700 Ом, где U и I – напряжение на резисторе и необходимый нам ток. Не забываем переводить величины в единицы СИ, в амперы и вольты. Поскольку выпускаемые номиналы сопротивлений стандартизованы выберем ближайший стандартный номинал 3,3кОм. Конечно, при этом ток изменится и его можно пересчитать по закону Ома I = U / R. Но зачастую это не принципиально.

В этом примере ток, отдаваемый батарейкой, мал, так что внутренним сопротивлением батареи можно пренебречь.

С осветительными светодиодами все тоже самое, только токи и напряжения выше. Но иногда им уже не требуется резистор, надо смотреть документацию.

Что-то еще про светодиод

По сути, светить – это основное назначение светодиода. Но есть и другое применение. Например, светодиод может выступать в качестве источника опорного напряжения. Они необходимы, например, для получения источников тока. В качестве источников опорного напряжения, как менее шумные, применяют красные светодиоды. Их включают в схему так же, как и в предыдущем примере. Поскольку напряжение батарейки относительно постоянное, ток через резистор и светодиод тоже постоянный, поэтому падение напряжения остается постоянным. От анода светодиода, где 1,8В, делается отвод и используется это опорное напряжение в других участках схемы.

Для более надежной стабилизации тока на светодиоде, при пульсирующем напряжении источника питания, вместо резистора в схему ставят источник тока. Но источники тока и источники опорного напряжения – это тема еще одной статьи. Возможно, когда-нибудь я ее напишу.

Стабилитрон

В английской литературе стабилитрон называется Zener diode. Все тоже самое, что и диод, в прямом включении. Но сейчас поговорим только про обратное включение. В обратном включении под действием определенного напряжения на стабилитроне возникает обратимый пробой, т.е. начинает течь ток. Этот пробой полностью штатный и рабочий режим стабилитрона, в отличие от диода, где при достижении номинального обратного напряжения диод просто выходил из строя. При этом, ток через стабилитрон в режиме пробоя может меняться, а падение напряжение на стабилитроне остается практически неизменным.

Что нам это дает? По сути это маломощный стабилизатор напряжения. Стабилитрон имеет все те же характеристики, что и диод, плюс добавляется так же напряжение стабилизации Uст или nominal zener voltage. Оно указывается при определенном токе стабилизации Iст или test current. Также в документации на стабилитроны указываются минимальный и максимальный ток стабилизации. При изменении тока от минимального до максимального, напряжение стабилизации несколько плавает, но незначительно. См. вольт-амперные характеристики.

Рабочая зона стабилитрона обозначена зеленым цветом. На рисунке видно, что напряжение на рабочей зоне практически неизменно, при широком диапазоне изменения тока через стабилитрон.

Чтобы выйти на рабочую зону, нам надо установить ток стабилитрона между [Iст. min – Iст. max] с помощью резистора точно так же, как это делалось в примере со светодиодом (кстати, можно также с помощью источника тока). Только, в отличие от светодиода, стабилитрон включен в обратном направлении.

При меньшем токе, чем Iст. min стабилитрон не откроется, а при большем, чем Iст. max – возникнет необратимый тепловой пробой, т.е. стабилитрон просто сгорит.

Расчёт стабилитрона

Рассмотрим на примере нашего рассчитанного трансформаторного БП. У нас есть блок питания, выдающий минимум 18 В (по сути там больше, из-за трансформатора 230/15 В, лучше мерить в реальной схеме, но суть сейчас не в этом), способный отдавать ток 1 А. Нужно запитать нагрузку с максимальным потреблением 50 мА стабилизированным напряжением 15 В (например, пусть это будет какой-нибудь абстрактный операционный усилитель – ОУ, у них примерно такое потребление).

Такая слабая нагрузка выбрана неспроста. Стабилитроны довольно маломощные стабилизаторы. Они должны проектироваться так, чтобы через них мог проходить без перегрева весь ток нагрузки плюс минимальный ток стабилизации Iст. min. Это необходимо, потому что ток после резистора R1 делится между стабилитроном и нагрузкой. В нагрузке ток может быть непостоянным, либо нагрузка может выключаться из схемы совсем. По сути это параллельный стабилизатор, т.е. весь ток, который не уйдет в нагрузку, примет на себя стабилитрон. Это как первый закон Кирхгофа I = I1 + I2, только здесь I = Iнагр + Iст. min.

Итак, выберем стабилитрон с напряжением стабилизации 15 В. Для установки тока через стабилитрон всегда необходим резистор (или источник тока). На резисторе R1 упадет 18 – 15 = 3 В. Через резистор R1 будет протекать ток Iнагр. + Iст. min. Примем Iст. min = 5 мА, это примерно достаточный ток для всех стабилитронов с напряжением стабилизации до 100 В. Выше 100 В можно принимать 1мА и меньше. Можно взять Iст. min и больше, но это только будет бесполезно греть стабилитрон.

Итак, через R1 течет Ir1 = Iнагр. + Iст. min = 50 + 5 = 55 мА. По закону Ома находим сопротивление R1 = U / I = 3 / 0,055 = 54,5 Ом, где U и I – напряжение на резисторе и ток через резистор. Выберем из ближайшего стандартного ряда сопротивление 47 Ом, будет чуть больше ток через стабилитрон, но ничего страшного. Его даже можно посчитать, общий ток: Ir1 = U / R = 3 / 47 = 0,063А, далее минимальный ток стабилитрона: 63 — 50 = 13 мА. Мощность резистора R1: P = U * I = 3 * 0,063 = 0,189 Вт. Выберем стандартный резистор на 0,5 Вт. Советую, кстати, не превышать мощность резисторов примерно Pmax/2, дольше проживут.

На стабилитроне тоже рассеивается мощность в виде тепла, при этом в самом худшем случае она будет равна P = Uст * (Iнагр + Iст.) = 15 * (0,050 + 0,013) = 0,945 Вт. Стабилитроны выпускают на разную мощность, ближайшая 1Вт, но тогда температура корпуса при потреблении около 1Вт будет где-то 125 градусов С, лучше взять с запасом, на 3 Вт. Стабилитроны выпускают на 0,25, 0,5, 1, 3, 5 Вт и т.д.

Первый же запрос в гугле «стабилитрон 3Вт 15В» выдал 1N5929BG. Далее ищем «datasheet 1N5929BG». По даташиту у него минимальный ток стабилизации 0,25 мА, что меньше 13 мА, а максимальный ток 100 мА, что больше 63 мА, т.е. укладывается в его рабочий режим, поэтому он нам подходит.

В общем-то, это весь расчёт. Да, стабилизатор это неидеальный, внутреннее сопротивление у него не нулевое, но он простой и дешевый и работает гарантировано в указанном диапазоне токов. А также поскольку это параллельный стабилизатор, то ток блока питания будет постоянным. Более мощные стабилизаторы можно получить, умощнив стабилитрон транзистором, но это уже тема следующей статьи, про транзисторы.

Проверить стабилитрон на пробой обычным мультиметром, как правило, нельзя. При более-менее высоковольтном стабилитроне просто не хватит напряжения на щупах. Единственное, что удастся сделать, это прозвонить его на наличие обычной диодной проводимости в прямом направлении. Но это косвенно гарантирует работоспособность прибора.

Еще стабилитроны можно использовать как источники опорного напряжения, но они шумные. Для этих целей выпускают специальные малошумящие стабилитроны, но их цена в моем понимании зашкаливает за кусочек кремния, лучше немного добавить и купить интегральный источник с лучшими параметрами.

Также существует много полупроводниковых приборов, похожих на диод: тиристор (управляемый диод), симистор (симметричный тиристор), динистор (открываемый импульсно только по достижении определенного напряжения), варикап (с изменяемой емкостью), что-то еще. Первые вам понадобятся в силовой электронике при постройки управляемых выпрямителей или регуляторов активной нагрузки. А с последними я уже лет 10 не сталкивался, поэтому оставляю эту тему для самостоятельного чтения в вики, хотя бы про тиристор.

Характеристики стабилизации напряжения стабилитрона

Описание продукта

Мы являемся известным поставщиком характеристик стабилизации напряжения стабилитрона для наших уважаемых клиентов. Это обеспечило от наших надежных продавцов, которые служили нам с их продуктами в течение многих лет. Они изготовляют это, используя высококачественное сырье и современное оборудование согласно промышленным стандартам. Мы проводим различные проверки качества перед отправкой, гарантируя обслуживание наших клиентов безупречным диапазоном характеристик стабилизации напряжения стабилитрона. Это обеспечило нам высокий растущий спрос на рынке.

 

Цель:

Применение стабилитрона для стабилизации напряжения.

Технические характеристики:

  • Встроенный регулируемый источник питания постоянного тока
  • Выходное напряжение: 0–30 В пост.
  • Сопротивление и диод в комплекте
  • Стабилитроны: 5.1 В и 8,2 В
  • Серия
  • Сопротивление: 1 №
  • Сопротивление нагрузки: выбирается с помощью ленточного переключателя
  • Высококачественный алюминий, используемый в качестве передней панели размером 270 мм x 170 мм и установленный на легком ударопрочном пластиковом корпусе
  • Схема символов напечатана на алюминии Передняя панель и все важные контрольные точки выведены на переднюю панель
  • Требования к питанию: 230 В переменного тока, 10%, 50 Гц.
  • Вес: 1,5 кг прибл.
  • Размеры (мм): 300(Д) x 175(Ш) x 75(В)

Стандартные принадлежности:

Кабель питания, патч-корды и инструкция по эксплуатации.

Также доступны другие модели

ME 542 — Характеристики стабилизации напряжения на стабилитроне с бакелитом

Панельные и круглые измерители

ME 542P — Характеристики стабилизации напряжения на стабилитроне с алюминием

Панельные и цифровые панельные измерители

Стабилизатор напряжения, Помощь по назначению, Диоды и транзисторы

Стабилизатор напряжения

Стабилизатор напряжения — это электронное устройство, способное обеспечивать относительно постоянное выходное напряжение, в то время как входное напряжение и ток нагрузки изменяются с течением времени.

Стабилизатор напряжения представляет собой шунтирующий регулятор наподобие стабилитрона или лавинного диода. Каждое из этих устройств начинает проводить ток при указанном напряжении и будет проводить столько тока, сколько необходимо для поддержания напряжения на его клеммах на заданном уровне. Таким образом, шунтовой регулятор можно рассматривать как параллельный стабилизатор ограниченной мощности. Выход шунтового регулятора используется в качестве источника опорного напряжения.

Стабилитрон и лавинный диод имеют противоположную зависимость порогового напряжения от температуры.Соединяя эти 2 устройства последовательно, можно построить источник опорного напряжения с улучшенной термической стабильностью. Иногда оба эффекта сочетаются в одном диоде.

Справка по назначению электронных устройств и схем на основе электронной почты — помощь с домашним заданием в Expertsmind

Вы ищете специалиста по проектированию электроники, чтобы получить помощь по вопросам, связанным со стабилизатором напряжения? Тему стабилизатора напряжения не проще изучить без посторонней помощи? Мы на www. expertmind.com предлагает бесплатные конспекты лекций для помощи в назначении электронных устройств и схем и помощи в выполнении домашних заданий по электронным устройствам и схемам. Репетиторы доступны круглосуточно и без выходных, чтобы помочь учащимся решить проблемы, связанные со стабилизатором напряжения. Мы предоставляем пошаговые ответы на вопросы о стабилизаторе напряжения со 100% содержанием без плагиата. Мы готовим качественный контент и примечания по теме «Стабилизатор напряжения» в разделе «Электронные устройства и схемы», теория и учебные материалы. Они доступны для подписанных пользователей, и они могут получить преимущества в любое время.

Почему Expertsmind для помощи при назначении

  1. Сеть обладателей высших степеней и опытных экспертов
  2. Пунктуальность и ответственность в работе
  3. Качественное решение со 100% ответами без плагиата
  4. Время доставки
  5. Конфиденциальность информации и сведений
  6. Превосходство в решении вопросов по электронике в формате Excel и Word.
  7. Лучшая репетиторская помощь 24×7 часов

ZTK33A Диод стабилизатора напряжения

ZTK33A Диод стабилизатора напряжения