Расчет частоты – Частота колебаний ℹ️ формулы определения циклической и собственной частоты колебаний пружинного и математического маятника, единицы измерения, характеристика, от чего зависит

Содержание

Формула частоты в физике

Определение

Частота - это физический параметр, которые используют для характеристики периодических процессов. Частота равна количеству повторений или свершения событий в единицу времени.

Чаще всего в физике частоту обозначают буквой $\nu ,$ иногда встречаются другие обозначения частоты, например $f$ или $F$.

Частота (наряду со временем) является самой точно измеряемой величиной.

Формула частоты колебаний

При помощи частоты характеризуют колебания. В этом случае частота является физической величиной обратной периоду колебаний $(T).$

\[\nu =\frac{1}{T}\left(1\right).\]

Частота, в этом случае - это число полных колебаний ($N$), совершающихся за единицу времени:

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $\Delta t$ - время за которое происходят $N$ колебаний.

Единицей измерения частоты в Международной системе единиц (СИ) служат в герцы или обратные секунды:

\[\left[\nu \right]=с^{-1}=Гц.\]

Герц - это единица измерения частоты периодического процесса, при которой за время равное одной секунде происходит один цикл процесса. Единица измерения частоты периодического процесса получила свое наименование в честь немецкого ученого Г. Герца.

Частота биений, которые возникают при сложении двух колебаний, происходящих по одной прямой с разными, но близкими по величине частотами (${\nu }_1\ и\ {\nu }_2$) равна:

\[{\nu =\nu }_1-\ {\nu }_2\left(3\right).\]

Еще одно величиной характеризующей колебательный процесс является циклическая частота (${\omega }_0$), связанная с частотой как:

\[{\omega }_0=2\pi \nu \left(4\right).\]

Циклическая частота измеряется в радианах, деленных на секунду:

\[\left[{\omega }_0\right]=\frac{рад}{с}.\]

Частота колебаний тела, имеющего массу$\ m,$ подвешенного на пружине с коэффициентом упругости $k$ равна:

\[\nu =\frac{1}{2\pi \sqrt{{m}/{k}}}\left(5\right).\]

Формула (4) верна для упругих, малых колебаний. Кроме того масса пружины должна быть малой по сравнению с массой тела, прикрепленного к этой пружине.

Для математического маятника частоту колебаний вычисляют как: длина нити:

\[\nu =\frac{1}{2\pi \sqrt{{l}/{g}}}\left(6\right),\]

где $g$ - ускорение свободного падения; $\ l$ - длина нити (длина подвеса) маятника.

Физический маятник совершает колебания с частотой:

\[\nu =\frac{1}{2\pi \sqrt{{J}/{mgd}}}\left(7\right),\]

где $J$ - момент инерции тела, совершающего колебания относительно оси; $d$ - расстояние от центра масс маятника до оси колебаний.

Формулы (4) - (6) приближенные. Чем меньше амплитуда колебаний, тем точнее значение частоты колебаний, вычисляемых с их помощью.

Формулы для вычисления частоты дискретных событий, частота вращения

дискретных колебаний ($n$) - называют физическую величину, равную числу действий (событий) в единицу времени. Если время, которое занимает одно событие обозначить как $\tau $, то частота дискретных событий равна:

\[n=\frac{1}{\tau }\left(8\right).\]

Един

Частота колебаний | Все формулы

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng! 
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Частота колебаний — величина, обратная периоду колебаний, т. е. равная числу периодов колебаний (числу колебаний), совершаемых в единицу времени.


Разновидность частот колебаний :

Циклическая частота

Частота колебаний физического маятника

Частота пружинного маятника

Частота математического маятника

Частота электромагнитных колебаний

Частота колебаний крутильного маятника

В Формуле мы использовали :

— Частота колебаний

— Циклическая частота

— Период колебаний маятника

— Масса груза, или масса маятника

— Жесткость пружины

— Длина подвеса

— Ускорение свободного падения

— Момент инерции маятника относительно оси вращения

— Расстояние от оси вращения до центра масс

— Момент инерции тела

— Вращательный коэффициент жёсткости маятника

Частота электрического тока: определение, формула, характеристики

Частота электрического тока 3

Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частота переменного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.

Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом — в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду. В качестве единицы измерения частоты во всем мире принят 1 Гц (в честь немецкого ученого Г.Герца), который соответствует 1 периоду колебания за 1 секунду.

В республиках бывшего СССР стандартной считается частота тока в 50 Гц.

Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 — в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.

Частота электрического тока 1

Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:

• Метод дискретного счета;

• Метод перезаряда конденсатора;

• Резонансный метод измерения частот.

• Метод сравнения частот;

Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.

Частота электрического тока 2

Более подробно о частоте переменного тока Вы можете узнать из видео:

Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.

Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.

Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.

Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.

Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.

Ещё одно интересное видео о частоте переменного тока:

Расчёт частоты сигнала по фазному и линейному напряжению

В данной заметке продолжаем исследовать частоту и её расчёт. Суть предыдущей заметки на эту тему сводится к двум тезисам:

  1. Обнаружены случаи неправильного определения частоты сети 6-35 кВ и, как следствие, ложной работы АЧР. Причина – переходный процесс перемежающегося однофазного замыкания на землю.
  2. Рецепт – измерять частоту по междуфазному напряжению.

На этот раз рассмотрим ещё один неочевидный фактор, влияющий на точность измерения частоты.

Вообще, для многих задач электроэнергетики частота сети должна определяться очень точно. К примеру, в одном из стандартов ПАО «ФСК ЕЭС» (СТО 56947007-29.200.80.210-2015) указывается, что предел допускаемой абсолютной погрешности измерения частоты не должен превышать ±0,01 Гц. В теории этот показатель достижим, и все производители соответствующих устройств со спокойной совестью заявляют такую точность.  Но давайте проверим, что мы имеем на самом деле. Для чистоты эксперимента проведем его в условиях, в которых снимали метрологические характеристики сами производители. Это будет в практически «стерильной» лаборатории. Найдем в этой  лаборатории какой-нибудь современный микропроцессорный контроллер с заявленной погрешностью измерения частоты не более ±0,01 Гц. Затем подадим на найденный контроллер от эталонного источника напряжения напряжение с частотой, к примеру, 45 Гц и посмотрим, что устройство покажет. Проведём анализ увиденного и в результате придем к тому или иному выводу.

Все вышеуказанное нами было скрупулезно проделано и получено следующее. Сначала подали фазное напряжение. Осциллограмма этого напряжения, записанная контроллером, приведена на рис. 1.

osc3_1
Рис. 1. Исследуемое фазное напряжение uA c частотой 45 Гц

Теперь самое интересное – рис. 2, на котором показана осциллограмма частоты, определённой по этому фазному напряжению.

osc3_2
Рис. 2. Расчёт частоты фазного напряжения с усреднением на 5 периодах (погрешность 0,055 Гц)

Что мы видим? А видим мы то, что погрешность  измерения частоты в 5,5 раз превышает максимальное заявленное значение! И это в лабораторных условиях… И то же самое происходит с контроллерами почти всех производителей.

Попробуем тот же рецепт, что и в прошлый раз? Результат представлен на рис. 3.

osc3_3
Рис. 3. Расчёт частоты по линейному напряжению uAB с усреднением на 5 периодах (погрешность 0,002 Гц)

Итак, промежуточный вывод: частоту необходимо рассчитывать из линейного напряжения.

Интереса ради мы повторили эксперимент для частоты 50 Гц. Напряжение опять подали фазное. Результат на рис. 4.

osc3_4
Рис. 4. Расчёт частоты по фазному напряжению uA с усреднением на 5 периодах

Погрешность не превысила ±0,002 Гц… Почему так получилось? Почему расчёт частоты для напряжений с частотой 45 Гц и 50 Гц так сильно разнятся?Постараемся ответить на этот вопрос. Оценим спектральную плотность мощности исследуемых напряжений. Спектр фазного напряжения с частотой 45 Гц, который удалось разглядеть, приведен на рис. 5. На нем отчётливо видны гармоники (вторая, третья, пятая и т.д.). Они-то и портят измерение частоты? Нет, дело в том, что гармоники по своей сути не могут исказить период периодического сигнала, они искажают только форму сигнала. Если присмотреться, то помимо гармоник в спектре можно обнаружить негармонические составляющие. А вот эти «товарищи» как раз частоту-то и портят.

osc3_5
Рис. 5. Спектр фазного напряжения uA (есть частоты 45, 50, 100, 135, 150, 200, 225 и 250 Гц)

По логике вещей выходит, что в спектре междуфазного напряжения негармонических составляющих быть не должно. Действительно, так и есть. Доказательством тому является рис. 6. Исключением является только пятая гармоника. Но она, как уже выяснили, безобидна для частоты.

osc3_6
Рис. 6. Спектр линейного напряжения uAB (есть частота 45, 225 Гц)

Исходя из приведённого выше исследования, можно сделать следующие выводы:

  1. Даже в «стерильных» лабораториях, не говоря уже о реальных объектах эксплуатации, устройства, измеряющие частоту сети, могут делать это не так, как мы того хотим. Виной тому откуда-то появляющиеся некие негармонические составляющие напряжения.
  2. Негармонические составляющие любят почему-то только фазное напряжение, а в междуфазном напряжении (том, которое использовано в проведённых экспериментах) почему-то не заводятся.

Вроде все, в целом, становится понятно. Но остался ещё ряд нераскрытых вопросов:

  1. Откуда негармонические составляющие в фазном напряжении и куда они деваются в междуфазном?
  2. Почему по фазному напряжению частота 50 Гц измеряется практически идеально?

Исследуемые напряжения приведены в осциллограммах.

Частота среза — Википедия

Материал из Википедии — свободной энциклопедии

Частота́ сре́за (частота отсе́чки) fc{\displaystyle f_{c}} — частота, выше или ниже которой мощность выходного сигнала некоторого линейного частотно-зависимого объекта, например, электронной схемы уменьшается в два раза

[2] от мощности в полосе пропускания при воздействии на вход неизменного по амплитуде сигнала.

Амплитудно-частотная характеристика на частоте среза имеет спад до уровня −log10⁡2{\displaystyle -\log _{10}2} (приблизительно −3 дБ) относительно уровня в полосе пропускания.

Пример вычисления частоты среза и коэффициента передачи на частоте среза фильтра нижних частот 1-го порядка[править | править код]

Фильтр нижних частот (ФНЧ) 1-го порядка имеет комплексную передаточную функцию H(s){\displaystyle H(s)} вида:

H(s)=11+αs,{\displaystyle H(s)={\frac {1}{1+\alpha s}},}
где s{\displaystyle s} — комплексная переменная преобразования Лапласа;
α{\displaystyle \alpha } — параметр фильтра, константа.

В случае подачи на вход фильтра гармонического сигнала с частотой ω{\displaystyle \omega } в установившемся режиме комплексная передаточная функция имеет вид:

H(jω)=11+αjω,{\displaystyle H(j\omega )={\frac {1}{1+\alpha j\omega }},}
где буквой j{\displaystyle j} обозначена мнимая единица;
ω{\displaystyle \omega } — угловая частота.

Эта функция имеет единственный полюс (частота, при которой знаменатель дроби обращается в 0) на частоте ωc=2πfc=1/α,{\displaystyle \omega _{c}=2\pi f_{c}=1/{\alpha },} fc{\displaystyle f_{c}} — частота среза.

Модуль коэффициента передачи этого ФНЧ в зависимости от частоты (эту функцию принято называть амплитудно-частотной характеристикой) имеет вид:

|H(jω)|=|11+αjω|=11+α2ω2.{\displaystyle \left|H(j\omega )\right|=\left|{\frac {1}{1+\alpha j\omega }}\right|={\sqrt {\frac {1}{1+\alpha ^{2}\omega ^{2}}}}.}

Модуль коэффициента передачи на частоте полюса:

|H(jωc)|=11+α2ωc2=12.{\displaystyle \left|H(j\omega _{\mathrm {c} })\right|={\sqrt {\frac {1}{1+\alpha ^{2}\omega _{\mathrm {c} }^{2}}}}={\frac {1}{\sqrt {2}}}.}

То есть, на частоте полюса коэффициент передачи уменьшается в 2.{\displaystyle {\sqrt {2}}.} В рассмотренном примере частота среза равна частоте полюса.

  1. ↑ Порядок фильтра равен порядку (степени алгебраического уравнения) знаменателя передаточной функции (ЛАФЧХ) фильтра. Как правило[уточнить], порядок фильтра равен количеству входящих в него сосредоточенных реактивных элементов.
  2. ↑ При этом амплитуда сигнала на частоте среза равна 12≈0,707{\displaystyle {\frac {1}{\sqrt {2}}}\approx 0,707} от амплитуды сигнала в полосе пропускания.

Фильтры RC. Частота среза. Расчёт онлайн.

Фильтр нижних частот (ФНЧ) - электрическая цепь, эффективно пропускающая частотный спектр сигнала ниже определённой частоты, называемой частотой среза, и подавляющая сигнал выше этой частоты.

Фильтр высших частот (ФВЧ) - электрическая цепь, эффективно пропускающая частотный спектр сигнала выше частоты среза, и подавляющая сигнал ниже этой частоты.

Рассмотрим в качестве фильтра простейшую цепь RC, принцип работы которой основан на зависимости реактивного сопротивления конденсатора от частоты сигнала.

Если к источнику переменного синусоидального напряжения U частотой f подключить последовательно резистор сопротивлением R и конденсатор ёмкостью C, падение напряжения на каждом из элементов можно вычислить исходя из коэффициента деления с импедансом Z.

Импеданс - комплексное (полное) сопротивление цепи для гармонического сигнала.
Z² = R² + X² ;    Z = √(R² + X²) , где Х - реактивное сопротивление.

Тогда на выводах резистора напряжение UR будет составлять:

XC – реактивное сопротивление конденсатора, равное 1/2πfC

При равенстве R = XC на частоте f, выражение упростится сокращением R и примет вид:

Следовательно, на частоте f равенство активного и реактивного сопротивлений цепочки RC обеспечит одинаковую амплитуду переменного синусоидального напряжения на каждом из элементов в √2 раз меньше входного напряжения, что составляет приблизительно 0.7 от его значения.
В этом случае частота f определится исходя из сопротивления R и ёмкости С выражением:

τ - постоянная времени цепи RC равна произведению RC

Повышение частоты уменьшит реактивное сопротивление конденсатора и падение напряжение на нём, тогда напряжение на выводах резистора возрастёт. Соответственно, понижение частоты увеличит напряжение на конденсаторе и уменьшит на резисторе.

Зависимость амплитуды переменного напряжения от его частоты называют амплитудно-частотной характеристикой (АЧХ).

Если рассмотреть АЧХ напряжения на выводах конденсатора или резистора в RC цепи, можно наблюдать на частоте f = 1/(2π τ) спад уровня до значения 0.7, что соответствует -3db по логарифмической шкале.

Следовательно, цепь RC может быть использована как фильтр нижних частот (ФНЧ) - красная линия на рисунке, или фильтр высших частот (ФВЧ) - синяя линия.

Ниже представлены схемы включения RC-цепочек в качестве фильтров соответственно ФНЧ и ФВЧ.

            

Частоту f = 1/(2π τ) называют граничной частотой fгр или частотой среза fср фильтра.

Частоту среза фильтра можно посчитать с помощью онлайн калькулятора

Достаточно вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Пост. времени τ RC и частота среза RC-фильтра
τ = RC ;   fср = 1/(2πτ)


Похожие страницы с расчётами:

Расчёт импеданса.
Расчёт резонансной частоты колебательного контура.
Расчёт компенсации реактивной мощности.


Замечания и предложения принимаются и приветствуются!

Формулы расчета резонансной частоты колебательного контура: амплитуда резонанса

Галилео Галилей, исследуя маятники и музыкальные струны, описал явление, которое впоследствии стали называть резонансом. Оно проявляется не только в акустике, но и в механике, электронике, оптике и астрофизике. Резонансный эффект имеет как положительные, так и отрицательные воздействия на колебательные системы.

Резонанс

Резонанс

Эффект резонанса

Ярким примером механического класса резонаторов является пружинный маятник. Профессор из технологического Массачусетского института (в Америке), В. Левин, акцентирует внимание своих студентов на то, что резонанс (resonance) – это эффект, сопряжённый с увеличением амплитуды. Для демонстрации явления используется установка. Она состоит из следующих компонентов:

  • электродвигатель;
  • механизм, превращающий вращение в возвратно-поступательное движение;
  • ЛАТР – лабораторный автотрансформатор;
  • медная пружина из проволоки с набором грузиков;
  • направляющая для пружины.

Направление колебания пружины – вертикальное. Вращение вала мотора заставляет пружину совершать колебания. С помощью автотрансформатора присутствует возможность регулировать напряжение. Регулировка позволяет варьировать частоту вращения вала и колебаний маятника. При изменении частоты вращения вала амплитуда возвратно-поступательного движения остаётся неизменной.

Перед опытом замеряется удлинение медной пружины под действием грузиков (для оценки резонансной частоты пружины). Изменение скорости вращения вала заставляет амплитуду колебания конца пружины с грузом изменяться. Амплитуда увеличивается и на 1-м герце частоты становится максимальной (~30 см).

Важно! При дальнейшем увеличении скорости вращения вала амплитуда конца пружины начинает уменьшаться. Это означает, что resonance пройден. Если уменьшать напряжение, а с ним и частоту вращения двигателя, снова можно наблюдать эффект resonance колебания пружины.

Пружинный маятник

Пружинный маятник

Добротность пружины Q определяется как отношение амплитуды колебания пружины Aпр к амплитуде колебания вынуждающей силы Aвс. В этом случае Q = Aпр/Aвс = 30/5 = 6, где Aвс = 5.

Определение колебательного контура

Резонансные явления, отмеченные в электротехнике, ярко выражены в схемах колебательных контуров (КК). Подобные конструкции представляют собой элементарные системы, способные осуществлять свободные колебания электромагнитной природы. Сам КК в цепи состоит из следующих элементов:

  • конденсатора;
  • катушки индуктивности;
  • источника тока.

Внимание! Выводы элементов схемы могут соединяться друг с другом параллельно или последовательно. Все зависит от того, какого результата нужно добиться от резонанса в КК.

Подключение к цепи индуктивной катушки

Включение в ёмкостную цепь катушки индуктивности сразу превращает её в КК. В зависимости от схемы подключения, различают два вида КК 1 класса: параллельный и последовательный.

Параллельный КК

В данной схеме конденсатор С соединён с катушкой L параллельно. Если заряженный конденсатор присоединить к катушке, то энергия, запасённая в нём, передастся ей. Через индуктивную катушку L потечёт ток, вызывая электродвижущую силу (ЭДС).

ЭДС самоиндукции L будет направлена на снижение тока в параллельной цепи. Ток, созданный этой ЭДС, и ток разряда ёмкости сначала одинаковы, а их суммарное значение равно нулю. Конденсатор передаст свою энергию Ec в катушку и полностью разрядится. Индуктивность, получив максимальную магнитную энергию EL, начнёт заряжать ёмкость напряжением уже другой полярности. Когда вся энергия из индуктивности перейдёт в ёмкость, конденсатор будет полностью заряжен. В цепи появляются колебания, такой контур называется колебательным.

Параллельный КК

Параллельный КК

К сведению. Если бы в такой цепи отсутствовали потери, то такие колебания никогда не стали затухать. На практике, продолжительность процесса зависит от потери энергии. Чем больше потери, тем меньше длительность колебаний.

Параллельное соединение C и L вызывает резонанс токов. Это значит, что токи, проходящие через C и L, выше по значению, чем ток через сам контур, в конкретное число раз. Это число носит название добротности Q. Оба тока (емкостной и индуктивный) остаются внутри цепи, потому что они находятся в противофазе, и происходит их обоюдная компенсация.

Стоит отметить! На fрез величина R КК устремляется к бесконечности.

Последовательный КК

В этой схеме соединены последовательно друг с другом катушка и конденсатор.

Последовательный КК

Последовательный КК

В такой схеме происходит resonance напряжений, R контура устремляется к нулю в случае образования резонансной частоты (fрез). Это позволяет использовать подобную систему резонанса в качестве фильтра.

Резонансная частота

При подаче на два КК (параллельного и последовательного) переменного напряжения с изменяющейся частотой их реактивные сопротивления C и L будут меняться. Изменения происходят следующим образом:

  • с увеличением f – ёмкостное сопротивление уменьшается, а индуктивное увеличивается;
  • с уменьшением f – ёмкостное сопротивление увеличивается, а индуктивное уменьшается.

Частота, при которой реактивные сопротивления обоих элементов контура равны, называется резонансной.

Важно! При fрез сопротивление параллельного КК будет максимальным, а последовательного КК – минимальным.

Резонансная частота формула, которой имеет вид:

fрез = 1/2π*√L*C,

где:

  • L – индуктивность, Гн;
  • C – ёмкость, Ф.

Подставляя известные значения ёмкости и индуктивности в формулу резонансной частоты колебательного контура любой конфигурации, можно рассчитать этот параметр.

Для определения периода колебаний КК и частоты резонанса можно воспользоваться онлайн калькулятором на соответствующем портале в сети. Профессиональная программа имеет несложный интерфейс.

Пример интерфейса онлайн калькулятора LC-контура

Пример интерфейса онлайн калькулятора LC-контура

Применение колебательных контуров

Подробный расчет колебательного контура позволяет точно подбирать величину необходимых элементов КК. Это позволяет использовать их в схемах электроники в виде:

  • частотных фильтров – в радиоприёмниках, генераторах сигналов, преобразователях и выпрямителях;
  • колебательных контуров – для выделения и настройки на определённую частоту станции вещания;
  • силовых resonance-фильтров – для формирования напряжения синусоидальной формы.

На самолётах гражданской авиации КК применяется в блоках регулировки частоты генераторов.

Условие отсутствия резонанса

Для того чтобы возник резонанс формула которого для тока равна ω0*C = 1/ ω0*L, необходимо выполнения этого равенства. Существуют условия для невозможности появления этого эффекта, а именно:

  • отсутствие у системы собственных колебаний;
  • невозможность совпадения частоты внешнего воздействия с собственной частотой системы.

Амплитуда резонанса

В КК при подаче переменного напряжения от внешнего источника наблюдаются два вида резонанса и резкое увеличение двух видов амплитуды: амплитуды тока и амплитуды напряжения.

Амплитуда тока

Амплитуда тока резко возрастает при резонансе напряжений в последовательном контуре (последовательный резонанс). Источник переменной ЭДС включён в цепь, где нагрузкой служат последовательно включённые элементы L и С.

В этом случае в цепь входят сопротивления: активное r и реактивное x, равное:

x = xL – xC.

Так как для внутренних колебаний xL и xC равны, то для тока, поступающего от генератора, при резонансе (когда частоты совпадают) эти значения тоже одинаковы. Поэтому x = 0. В итоге полное сопротивление цепи будет состоять только из небольшого активного сопротивления. Ток при этом получается максимальным.

Схема (а) и резонансные кривые (б) для резонанса напряжений

Схема (а) и резонансные кривые (б) для резонанса напряжений

Амплитуда напряжения

Резонанс токов (параллельный резонанс) является условием резкого возрастания амплитуды напряжения. Источник ЭДС подключается вне контура и нагружен параллельно соединёнными элементами L и С. В этом случае на эффект резонанса влияет внутреннее сопротивление генератора. Амплитуда напряжения на контуре максимальна при малом отличии напряжения контура от напряжения генератора. Это возможно при малом Ri.

Внимание! Изменение частоты генератора меняет ток, а амплитуда напряжения на контуре не отстаёт по величине от напряжения на генераторе. Если, U = Е – I*Ri, где Е – ЭДС, I – ток, то при малом Ri U = Е.

Схема (а) и резонансные кривые (б) для резонанса токов

Схема (а) и резонансные кривые (б) для резонанса токов

Формула для определения расчётной резонансной частоты для разных колебательных систем различается по входящим в неё параметрам. Несмотря на все различия, суть остаётся неизменной: эффект резонанса наступает тогда, когда частота внутренних колебаний системы и внешних воздействий становятся равны друг другу.

Видео

Author:

Отправить ответ

avatar
  Подписаться  
Уведомление о