Если в аккумуляторе электролита мало: Какой должен быть уровень электролита в аккумуляторе. Замеряем от пластин. Разберем автомобильный вариант

Содержание

Кислотные аккумуляторы; чтобы больше не было отвратительно читать то что люди о них пишут

Случайно узрел

статью

с комментариями к ней, и так злость во мне закипела по поводу безграмотности людей в области кислотных (свинцовых в простонародье) аккумуляторов, что не выдержал и решил написать «гикам» (чтобы быть гиком, как оказывается, мало купить дорогой телефон) краткую статью об аккумуляторах. С рассмотрением тех ошибок, которые мне постоянно мусолят глаза и вызывают праведное желание их исправить.

Начнем с названия. Я очень часто вижу что тремя буквами А-К-Б называют все что можно зарядить, абсолютно любой аккумулятор. Особенно тремя буквами люди любят называть аккумуляторы типа Li-ion. На самом-же деле АКБ аббревиатура от Аккумуляторная Кислотная Батарея. Под ними подразумевается лишь один тип аккумулятора — свинцовый кислотный. С современной точки зрения это название вызывает некоторый когнитивный диссонанс т.к. на данный момент значение слова «батарейка» т.е. гальванического элемента который зарядить нельзя перешло на слово «батарея». И получается как будто бы из-за слова «аккумуляторная» это аккумулятор который зарядить можно, а из-за слова «батарея» это как будто батарейка которую зарядить нельзя. В реальности-же батарея — просто цепь гальванических элементов и со словом «батарейка» имеет общий лишь корень.

Далее перейдем к некоторым мифам, а именно главный миф — АКБ для автомобиля имеет некие существенные отличия от АКБ для ИБП. И вот нельзя их применять и там и там.

С химической точки зрения любые АКБ абсолютно одинаковы. Как-же они устроены? Очень кратко — если аккумулятор заряжен, то один электрод представляет собой свинцовую решетку с нанесенной на нее пастой из PbO2, второй -такую-же решетку с пастой губчатого свинца. Электролитом служит раствор серной кислоты. В процессе разряда PbO2 восстанавливается и взаимодействуя с серной кислотой образует PbSO4. Свинец на другом электроде окисляется и опять-же образует PbSO

4. В конце разрядки мы имеем обе решетчатые пластины заполненные (более или менее) сульфатом свинца. При зарядке аккумулятора происходит электролиз и из сульфата свинца вновь образуется диоксид и металлический свинец. Конечно-же, тут нужно подчеркнуть, что электроды при этом не равны и путать их полярность не стоит т.к. еще на стадии производства в намазку электродов вводятся соответствующие добавки, улучшающие их эксплуатационные свойства. При этом добавки полезные для одного электрода вредны для другого. В очень старые времена, где-то в начале прошлого века, в условиях простых аккумуляторов, вероятно, была допустима переполюсовка аккумулятора по ошибке или с какими-то целями и он какое-то время после этого работал. В том что она допустима сейчас я сомневаюсь.

Таких ячеек в 12В аккумуляторе 6 шт, в 6В — 3 шт. и т.д. Многих вводит в заблуждение значение напряжения на аккумуляторах. Причем значений напряжения номинального, заряда, разряда. С одной стороны, аккумуляторы называются 12В (и 6В, 24В тоже есть, по-моему, даже 4В изредка встречаются) но на корпусе тех-же аккумуляторов для ИБП производитель указывает напряжение выше 13.

5В.

Например:


Тут мы видим, что в форсированном режиме напряжение заряда может быть аж 15В.

Все разъяснит кривая напряжения на АКБ:

Слева мы видим напряжение для аккумулятора из 12 ячеек (24В номинальных), 6 (12В номинальных) и, самое полезное, для одной ячейки. Там-же отмечены области нежелательных напряжений при разряде/ заряде. Из кривой можно сделать выводы:

1 Напряжение 12В, 24В и т.д. являются номинальными и показывают лишь число гальванических ячеек (путем деления на два) в батарее. Это просто название для удобства.

2 Напряжение при заряде могут достигать 2.5 В/ ячейку что для 12В аккумулятора соответствует 15В.

3 Напряжение заряженной батареи считается допустимым при значении 2.1-2.2 В/ячейку, что для 12В аккумулятора соответствует 12.6-13.2В.

Теоретически, батарею можно зарядить и до значений 2.4 В/ячейку или даже немного выше, однако, такая зарядка будет негативно сказываться как на состоянии электродов, так и на концентрации электролита. Однажды, перед сдачей в утиль, я легко зарядил 12В батарею до напряжения ок. 14.5В (уже не помню точное значение).

Итак, автор статьи с которой я начал, решил, что напряжение заряда автомобильной АКБ и АКБ от ИБП отличаются. Это неверно, у них одинаковый тип электродов и одинаковая концентрация серной кислоты в электролите (подобранная давным-давно экспериментальным путем, чтобы предоставлять максимальное напряжение и минимальном саморазряде). Однако, что-же происходит в батарее, почему ее нельзя заряжать при слишком высоком значении напряжения?

Почему в автомобильную АКБ нужно подливать воду, а в АКБ от ИБП не нужно? Эти вопросы позволяют нам плавно перейти в область напряжения разложения воды. Как я написал выше, при зарядке аккумулятора происходит электролиз. Однако, не весь ток расходуется на превращение PbSO4 в PbO2 и Pb. Часть тока будет неизбежно расходоваться и на разложение воды, составляющей значительную часть электролита:

2H2O = 2H2 + O2

Теоретический расчет дает значение напряжения для этой реакции ок. 1.2В. Напоминаю, что напряжение на ячейке при заряде заведомо более 2В. К счастью, активно вода начинает разлагаться только выше 2В, а в промышленности для получения водорода и кислорода из нее процесс ведут и вовсе при 2.1-2.6В (при повышенной температуре). Как бы то ни было, тут мы приходим к выводу, что в конце процесса заряда АКБ будет

неизбежно происходить процесс разложения воды в электролите на элементы. Образующиеся кислород и водород попросту улетучиваются из сферы реакции. Про них бытуют следующие мифы:

1. Водород крайне взрывоопасен! Перезарядишь аккумулятор и как минимум лишишься комнаты где тот был!

На самом деле, водорода в процессе электролиза выделяется ничтожно мало по сравнению с объемом комнаты. Водород взрывается при концентрации от 4% в воздухе. Если мы допустим, что электролиз ведется в комнате размером 3*3*3 метра или 27 метров куб., то нам понадобится наполнить помещение 27*0.04=1.1 метров куб. водорода. Для получения такого количества h3 нужно было бы полностью разложить ок. 49 моль воды или 884 грамма ее. Если кто-то наблюдал электролиз, то поймет насколько это много. Или попробуем перейти ко времени. При силе тока в стандартной зарядке для крупногабаритных АКБ в 6А, уравнение Фарадея дает время, необходимое для получения этого количества водорода, аж 437 часов или 18.2 дня. Чтобы наполнить комнату водородом до взрывоопасной концентрации нужно забыть про зарядку на 2 с половиной недели! Но даже если это случится, концентрация серной кислоты просто будет расти пока ее раствор не приобретет слишком высокое сопротивление для жалких 12В зарядки и сила тока не станет ничтожной. Да и водород попросту улетучится.

Очень редко случаются взрывы непосредственно в корпусах крупногабаритных АКБ из-за того, что выделяющийся водород по какой-то причине не может покинуть замкнутого пространства. Но и в этом случае нечего страшного не бывает — чаще всего взрыва хватает только на небольшую деформацию верхней части корпуса, но не на разрыв свинцовых соединений. И АКБ еще может работать дальше даже после таких повреждений.

2. При электролизе может образоваться смертельно ядовитый и, не менее взрывоопасный чем водород, сероводород!

Не наш, периодически попадался миф в англоязычных постах. Теоретически конечно возможно подать такое большое напряжение и создать т.о. такую большую силу тока, что на катоде начнется процесс восстановления сульфат-иона. Напряжение для этого будет достаточным, а продукты восстановления не будут успевать диффундировать подальше от электрода и восстановление будет идти дальше. Но зарядка в пределах десятка-трех вольт и с ограничением силы тока в 6А на такое едва ли способна. Однажды, я наблюдал процесс восстановления сульфата до SO2, да, это возможно; однокурсницы по ошибке что-то сделали не то во время опыта. Но это большая редкость т.к. там концентрация серной кислоты была заметно выше той, что используется в АКБ, была иная конструкция электрода и иной его материал и, естественно, напряжения и сила тока были были непомерными. И SO

2 не H2S.

3. При электролизе мышьяк и сурьма из материала решеток будут восстанавливаться до ядовитых арсина и стибина!

Действительно, решетки содержат относительно много сурьмы, мышьяка в современных решетках, вероятно, нет вообще. При работе АКБ та решетка на которой происходит восстановление, т.е. катод, разрушению не может подвергаться. Выделяйся даже каким-то образом стибин, он бы тут-же взаимодействовал с PbSO4, восстанавливая его до металла.

Однако, некоторая практическая неприятность тут есть. Газообразные водород и кислород могут увлекать за собой капельки электролита, создавая аэрозоль серной кислоты. Аэрозоль серной кислоты, даже концентрированной, для человека не опасен и просто вызывает кашель. Однако, серная кислота — кошмар для тканей и бумаги. Стоит даже небольшому количеству серной кислоты попасть на одежду и там обязательно появятся дырки или ткань разорвется по этому месту. Через недели, если кислоты много, через месяц, но одежда истлеет.

Так что газовыделения опасаться не стоит с бытовой точки зрения или стоит, но нужно ориентироваться именно на аэрозоль серной кислоты.

Итак, вода начала разлагаться на водород кислород, ее в электролите становится все меньше, что-же дальше? Если это АКБ в котором электролит просто налит в виде слоя жидкости, то начнется повышение саморазряда из-за повышения концентрации серной кислоты. Занятно, что это будет сопровождаться небольшим повышением напряжения (концентрация кислоты растет) на ячейке. Именно поэтому автовладельцы должны постоянно контролировать концентрацию серной кислоты в своих АКБ (при помощи ареометра) и доливать туда воду. Процедура доливания воды — необходимая часть процесса обслуживания

любой АКБ. Кроме одного их типа, и мы сейчас об этом поговорим.

Иметь аккумулятор в котором болтается слой едкой, по отношению к металлам, жидкости конечно-же неудобно, а потому попытки избавиться непосредственно от жидкости предпринимались давно, начались чуть ли не в первой половине 20-го века. К слову сказать, не то чтобы слой серной кислоты прямо плескался вокруг электродов. В реальности она неплохо распределена между электродами и окружающими их сепараторами даже в дешевых моделях. Итак, первым вариантом было использование стекловолокна. Достаточно просто окружить электроды стекловолокном которое пропитано серной кислотой и большинство проблем решится. Этот тип АКБ носит название AGM (absorbent glass mat) и таких АКБ для ИБП подавляющее большинство. Хотя такие АКБ малого форм-фактора и зачастую позиционируются как те, которые можно эксплуатировать в любом положении, с этим нельзя вполне согласиться. Вскрытие крышки стандартного дешевого AGM аккумулятора показывает, что никаких особых крышек там нет, а следовательно, электролит от вытекания удерживают лишь капиллярные силы. Я почти уверен, что если погонять AGM аккумулятор перевернутым вверх дном, то уже после одной зарядки из него польется серная кислота под давление газов.

Второй распространенный тип интереснее, это т.н. гелевые АКБ. А получаются они благодаря следующему. Если подкислять растворимые силикаты, то будет происходить выделение кремневой кислоты:

Na2SiO3 + H2SO4 = Na2SO4 + SiO2 + H2O

Если исходный раствор силиката не отличается качеством, то кремневая кислота будет выделяться в виде стекловидной массы, но если он достаточно чист, то кремневая кислота осадится в виде красивого куска однородного полупрозрачного геля. На этом и основан способ получения гелевых АКБ — простое добавление силикатов к электролиту вызывает его затвердение в гелеобразную массу. Соответственно, вытекать оттуда уже нечему и АКБ действительно можно эксплуатировать в любом положении. Сам по себе процесс образования геля не повышает емкости АКБ и не улучшает его качеств, однако, производители его используют при производстве наиболее качественных моделей, а потому эти АКБ отличаются высоким качеством и большей емкостью. Занятно, что в обоих случаях носителем электролита является SiO2 в той или иной форме.

Оба типа АКБ объединяются в славный тип VRLA — valve-regulated lead-acid battery который и применяется в ИБП. Формально они считаются необслуживаемыми и терпящими эксплуатацию в любом положении, но это не совсем так. Более того, многие уже встречались с эффектом, когда буквально несколько мл воды возвращают к жизни, казалось бы, дохлую АКБ от ИБП. Так получается, потому что и эти аккумуляторы не капли не застрахованы от электролиза воды в электролите, а следовательно, и пересыхания. Все происходит точно так-же, как в крупногабаритных АКБ. А вот самые дорогие и крутые необслуживаемые АКБ содержат катализатор для рекомбинации выделяющихся газов обратно в воду и вот уже у них корпус действительно выполнен абсолютно герметичным. Обращаю внимание, что по-настоящему герметичным и необслуживаемым может быть и аккумулятор типа AGM и GEL, но они-же могут ими и не быть и не содержать катализатора рекомбинации кислорода и водорода. Тогда, несмотря на казалось бы продвинутую конструкцию, пользователю придется либо чаще покупать новые аккумуляторы, либо доливать воду при помощи шприца.

Хотелось бы добавить несколько слов о режимах разряда. Производители АКБ указывают какой ток максимально допустим для той или иной модели, но нужно понимать, что аккумулятор — просто смесь химических веществ и ЭДС генерируется исключительно химическим путем. Это не конденсатор который, по электрогидравлической аналогии, можно сравнить с неким механическим сосудом (с гибкой мембраной). Хотя АКБ могут выдавать очень большие значения силы тока, в реальности они лучше всего эксплуатируются как раз при небольших токах, что в разряде, что в заряде. Поэтому ИБП, рассчитанные на заряды небольших АКБ, при работе с крупногабаритными будут заряжать их в наиболее щадящем режиме. Впрочем, в течении далеко не одних суток. Интересно обратить внимание на то, что чем выше мощность ИБП, тем больше аккумуляторов последовательно предпочитает собирать производитель. Тут все логично — большие токи разряда маленькие АКБ выдерживают очень плохо.

Подводя итоги:

1. Малогабаритные и крупногабаритные АКБ идентичны по устройству.

2. Для подавляющего большинства АКБ любого размера доливание воды является необходимой частью текущего обслуживания.

3. Лишь немногие из дорогих моделей АКБ содержат механизм рекомбинации газов и могут быть названы действительно необслуживаемыми.

4. Сам по себе водород, который выделяется при заряде (а это равно постоянной работе в ИБП) АКБ, не является существенной угрозой или проблемой.

5. Нужно очень внимательно работать с АКБ, тщательно избегая пролива даже малейших капель электролита, или лишитесь одежды.

6. Разряд и заряд малыми токами являются наиболее предпочтительными режимами эксплуатации АКБ.

Как Проверить Плотность Необслуживаемого Аккумулятора

Информационный сайт о накопителях энергии

Свинцовые автомобильные аккумуляторы накапливают энергию до тех пор, пока идет химическая реакция между электролитом и токопроводящими пластинами. При изменении плотности электролита, этот процесс нарушается. Неважно, по какой причине испортился электролит, аккумулятор не работает. Требуется замена электролита, корректировка плотности или приобретение новой АКБ. В случае если электролит приобрел черный цвет, в нем взвесь угля и окалины – аккумулятор придется менять.

Полная замена электролита в аккумуляторе

Электролит представляет смесь серной кислоты с водой в определенной пропорции. О концентрации раствора узнают по плотности, измеряемой ареометром. Показатель основной, даже сотые доли влияют на способность электролита работать на накопление энергии.

Признаки негодного электролита:

  • Измерение плотности на заряженном аккумуляторе ареометром. Значение должно быть 1,25 -1,27 г/см3.
  • Мутный электролит – свидетельство того что внутри идут паразитные процессы сульфатирования.
  • Электролит перемерзал, но герметичность корпуса не нарушена.
  • Раствор черный или темно-коричневый со взвесью угля и окалины.

Замена электролита в аккумуляторной батарее будет эффективна, когда полости банок обследованы, промыты, удален сульфатный осадок. Если разрушены пластины, осыпалось активное вещество – аккумулятор не ремонтопригоден.

В домашних условиях полная замена электролита в аккумуляторе автомобиля происходит в последовательности:

  • Подготовить эмалированную или стеклянную посуду для слива электролита, средства личной защиты, место для работы, лучше, на открытом воздухе.
  • Аккумулятор извлечь, из автомобиля, снять пробки или просверлить отверстия в необслуживаемом АКБ, слить жидкость в подготовленную тару, пользуясь грушей или шприцом.
  • Аккумулятор промывается дистиллированной водой многократно, пока не удалится осадок. Возможно, придется удалять сульфат свинца, если есть осадок на пластинах. Нужно убедиться что активная замазка не осыпалась, угольная решетка цела.
  • Медленно, с перерывами залить электролит нужной плотности в каждую банку выше пластин на 5-7 мм. Подождать 2-3 часа для выхода пузырьков, замерить плотность электролита, довести до нормы
  • Зарядку аккумулятора после замены электролита вести малым током 0,1 А, не допуская закипания. После набора половины емкости, зарядка ведется циклично.
  • Произвести герметизацию банок.

Сколько времени заряжать аккумулятор? Заряжать аккумулятор после замены электролита нужно бережно, как после глубокой разрядки. Операция замены электролита своими руками в автомобильном аккумуляторе считается законченной, если он полностью принимает ток длительное время. Зарядка ведется осторожно, кипение в банках недопустимо.

Предлагаем посмотреть видео по правильной замене электролита в автомобильном аккумуляторе.

Чем долить аккумулятор – принимаем решение

Если вы купили б/у АКБ с пустыми банками или обнаружили, что вся жидкость куда-то делась – заливайте электролит. Правда, в последнем случае, лучше поменять батарею. Как показывает практика, в такой ситуации в аккумуляторе происходят необратимые явления, приводящие к выходу из строя, и подобная мера носит временный характер.

Если же вы заметили снижение уровня жидкости в банках – действуйте по инструкции.

  1. Поставьте АКБ на горизонтальную ровную поверхность.
  2. Уберите мусор с верхней части.
  3. Аккуратно открутите все пробки.
  4. С помощью спринцовки или шприца возьмете оставшийся раствор с каждой банки и обратите внимание на его цвет (в норме – прозрачный).
  5. Долейте дистиллированную воду, поставьте на зарядку малым током.
  6. Спустя 2-3 часа проверьте плотность ареометром.
  7. Если вы получили значение 1,27-1,29 г/см – значит проблема была в потере дистиллированной воды.

Иногда автомобилисты получают низкое значение и начинают паниковать. Обычно это случается, если сделать замер сразу после заливки воды, при горячем аккумуляторе или недостаточной зарядке батареи.

После доливки воды нужно проверить плотность электролита в банке. Серная кислота должна перемешаться с водой, а происходит это спустя 2-3 часа после зарядки, при температуре в пределах 15-27 0С. В других условиях показатели не будут достоверными.

Запомните: нельзя заливать новый электролит в аккумулятор при снижении уровня жидкости в банках. В этом случае единственное верное решение – доливка дистиллята.

Почему нельзя доливать электролит в аккумулятор

Вы замерили уровень в банках аккумулятора, он ниже нормы? Это значит, что часть воды испарилась. Если это обслуживаемый аккумулятор, нужно замерить уровень в каждой банке и долить электролит до нормы водой. В необслуживаемом АКБ сквозь стенки видно зеркало залива.

Упал уровень, значит в растворе мало воды и высокая плотность. Добавленный электролит повысит уровень, но плотность раствора останется высокой. Это пагубно для пластин АКБ, сокращается срок службы батареи. Поэтому следует электролит доводить до уровня, доливая дистиллированную воду.

Посмотрите видео о правилах замены электролита.

Сколько доливать воды в банки?

Еще одно важное условие. На некоторых аккумуляторах есть специальный уровень (обычно на корпусе сбоку) именно до него стоит добавить воды (переливать нельзя).

Однако большое количество АКБ такого уровня не имеют, так сколько же лить?

ОДНО очень простое правило. Пластины должны быть закрыты электролитом на 1 – 1,5 см (замеряется специальными мерными трубочками). При таком уровне как раз и получается плотность в 1,27 г/см3

Больше лить не стоит, иначе плотность упадет до 1,20 – 1,24 г/см3 и есть большая вероятность, что батарея может зимой замерзнуть.

Сейчас небольшое, но полезное видео, смотрим.

НА этом заканчиваю, думаю, моя статья была вам полезна. Искренне ваш АВТОБЛОГГЕР

(7 голосов, средний: 5,00 из 5)

В каких случаях доливать электролит в аккумулятор?

Электролит в аккумулятор доливают, когда снижается емкость. При этом замеры ареометром содержимого каждой банки показывают снижение плотности. Возможно, в АКБ произошла сульфатация, связанный кислотный остаток в PbSO4 не участвует в реакции.

Если электролит, извлеченный из банок прозрачный, светлый, его можно использовать вторично, добавив корректирующий раствор, плотностью 1,4 г/см3. После снятия осадка на пластинах, батарея заливается прежним электролитом, но он низкой концентрации. Можно ли довести раствор до нужной плотности, доливая электролит? Какой состав взять, и сколько нужно долить в аккумулятор корректирующего раствора?

По технологии нужно заменить порцию слабого состава крепким. Долить и изъять электролит из банок раствор можно, воспользовавшись грушей и мерным цилиндром. Как поменять растворы, в какой пропорции видно из таблицы.

При этом следует использовать только электролит для корректировки. После операции замены, в течение получаса ведется подзарядка, чтобы жидкости смешались. Через два часа после отключения ЗУ проверяется плотность, если нужно, корректировка повторяется.

Предлагаем ознакомиться на видео, как долить электролит в аккумулятор.

Электролит

Как мы с вами знаем, электролит (внутри АКБ) состоит из двух основных компонентов:

  • Это серная кислота. Ее примерно 35% от всего объема
  • Дистиллированная вода. Ее примерно 65%

При смешивании этих двух субстанций и поучается нужный для работы электролит, плотностью – 1,27 г/см3. Больше 35% кислоты добавлять не рекомендуется, если задрать плотность до 1,3 – 1,4 г/см3, то при такой концентрации свинцовые пластины будут страдать и могут раньше времени разрушится.

Что доливать в аккумулятор, воду или электролит

При соблюдении условий эксплуатации, необслуживаемые аккумуляторы не требуют контроля плотности и уровня электролита. Обслуживаемые АКБ имеют специальные пробки – доступ к каждой банке. В них регулярно проверяются показатель качества и уровня электролита. Запас энергии батареи определяется по самому слабому элементу. Поэтому необходимо поддерживать плотность электролита во всех банках равной.

Плотность в банке может снизиться, если началась сульфатация. Тогда добавка электролита не поможет. Сильное сопротивление забитых пластин не пропускает заряд, добавленная кислота увеличит отложения. В этом случае заряд восстановит сульфатирование. Вот почему нельзя в АКБ с налетом сульфата свинца доливать электролит.

Доливать ли воду в аккумулятор? Если уровень электролита в банках низок, это указывает на интенсивное кипение батареи во время работы. Испаряется в основном водород. С оголенных пластин может осыпаться активная замазка, произойдет сульфатирование, коррозия. Поэтому подлить дистиллированную воду необходимо, но после этого аккумулятор нужно ставить на зарядку по полному циклу.

Как добавить воду в аккумулятор?

Для начала разберем обслуживаемый вариант – когда сверху батареи есть пробки. Здесь все элементарно:

Первое – нужно купить дистиллированную воду в магазине или же нагнать ее самому дома.

Второе — просто откручиваем пробки сверху и смотрим на пластины. Если они оголены, уровень электролита ниже, нужно добавить так чтобы вода их закрыла. Сколько лить расскажу чуть ниже

Третье – после добавления ставим на зарядку, можно использовать автоматические зарядные устройства

Как видите, все элементарно — никаких проблем нет.

Когда доливать в электролит, а когда воду

Вопрос, чем долить, если мало электролита в банках аккумулятора требует особого освещения. Такие жидкости, как электролит или дистиллированная вода, нужно заливать в аккумулятор правильно. Корпус и воронка должны быть чистыми, заливаемая жидкость прозрачная, без взвеси. Долить электролит водой можно, используя медицинский шприц без иглы, если корректировка требуется незначительная.

В каких случаях можно доливать воду в электролит аккумулятора? Если в одной или нескольких банках уровень электролита в АКБ низкий. Это происходит из-за кипения банок в условиях повышенной температуры или глубокого разряда. Добавлением дистиллированной воды восполняются потери объема, уменьшается плотность электролита, предотвращается скорый износ батареи.

Нужно ли заряжать аккумулятор после добавления воды, или замены электролита? Любое изменение внутреннего баланса требует выравнивания и стабилизации. После изменения концентрации жидкости необходимо провести полный цикл зарядки, убедиться, что аккумулятор не потерял емкость, стабильно напряжение на клеммах, обеспечивает пусковой ток.

Можно ли долить электролит в аккумулятор, если случайно его выплеснули? Как это случилось? Возможно, перевернули прибор. Это один из немногих случаев, когда вытекший электролит заменяют точно таким же и даже температуру подгоняют. Но все равно потребуется подзарядка и проверка плотности.

Посмотрите видео, как правильно долить электролит в аккумулятор. Вода или электролит, что доливать?

Как вскрыть крышку батари

Обслуживаемые батареи имеют пробки для ревизии банок. Добраться к содержимому необслуживаемого аккумулятора сложнее. Пробок не предусмотрено, и монолитная крышка представляет собой лабиринт для улавливания и конденсирования паров. Нарушение ходов лабиринта снизит эффективность системы. Поэтому перед тем как открыть крышку батареи, требуется взвесить все за и против.

Внимание! Перед вскрытием и проверкой аккумулятора, его обязательно нужно зарядить! Плотность электролита на разряженной батарее значительно ниже!

Вот несколько вариантов, как добраться до электролита:

  1. В АКБ есть глазок с поплавком. Поддев стеклышко, мы получаем доступ к одной банке батареи. Измерение плотности электролита в одной банке не дают полной картины.

  2. Снять крышку батареи. Верхняя часть срезается или силой срывается, так как она припаяна. После обслуживания батареи главная сложность — приклеить крышку на место. По возможности, следует избегать этого способа.
  3. Сверление отверстий — самый доступный способ того, как вскрыть АКБ.

Читать также: Фартук токарного станка предназначен

Самый оптимальный метод — сверление отверстий. Для большей части процедур этого достаточно, через них можно залить электролит, проверить его уровень и плотность.

  • Центры должны совпадать с отливками под заводские заливные пробки. Сняв наклейки, контуры легко просматриваются.
  • Сверлить лучше в несколько этапов, чтобы стружка не попала внутрь. Первое сверло – 3-4 мм. Просверлив все отверстия, можно тонким щупом проверить уровень электролита. Если на этом проверка закончится, мелкие отверстия можно залить горячим клеем или силиконом.
  • Второе сверло — 12 мм. Через такое отверстие можно воспользоваться ареометром.

Чтобы заглушить отверстия, можно воспользоваться пластиковыми пробками от лекарственных средств — пустырник, мята перечная, валерьянка. Пробки должны стать плотно, заготовить их нужно еще до сверления. При установке пробки можно посадить на клей, тогда с высокой долей вероятности свойства крышки-лабиринта сохранятся. Просто вставив пробки, мы получаем простой необслуживаемый аккумулятор. К банкам добраться значительно проще, но делать это придется довольно часто — электролит будет требовать постоянной доливки.

Как долить электролит в необслуживаемый аккумулятор

Все намного сложнее, если потребовалось долить воду в электролит необслуживаемого аккумулятора автомобиля. Сквозь полупрозрачные стенки можно увидеть, сколько электролита в банках. Но как проникнуть в корпус необслуживаемого аккумулятора?

Есть модели, проникнуть внутрь в которых можно отрезав болгаркой верхнюю крышку. Но такие действия нужны, если нужно удалить накипь и промыть осевший внизу шлам. Для того чтобы долить жидкость до нужного уровня сверлят отверстие в корпусе. Позже его заклеивают эпоксидным клеем.

Полностью необслуживаемый аккумулятор требует бережного обращения, боится глубоких разрядов и нестабильной работы бортовой АКБ. Заявленные 5-7 лет он выдерживает только в идеальных условиях.

Проверяем уровень электролита

Перед тем как проверить плотность аккумулятора без ареометра необходимо установить его уровень. В том случае, если сам аккумулятор выполнен из полупрозрачного пластика, то проверка уровня электролита не представляет сложности. Если же аккумулятор выполнен из непрозрачного темного пластика, то для проверки уровня электролита потребуется специальная стеклянная трубка, имеющая диаметр около 5 миллиметров. Такая трубка опускается в банку до упора, после чего ее верхнее отверстие закрывают пальцем. Трубку аккуратно достают из аккумулятора. В ней останется электролит, который сливают в колбу и проверяют уровень. Считается, что норма жидкости в колбе составит 10-15 миллиметров. В том случае, если уровень больше или меньше необходимо его выровнять, после чего измерять плотность электролита.

Как разобрать необслуживаемый аккумулятор чтобы долить электролит

В современных АКБ, таких как VARTA, под декоративной наклейкой можно увидеть 6 пластинок, плотно утопленных в корпус. Если подковырнуть кружок шилом, можно под ним обнаружить пробку резиновую. Тогда появится возможность отобрать пробу электролита, провести замер плотности, откорректировать состав. Если нет пробки – в каждой банке колется отверстие тонким шилом, а вода запускается из шприца, каплями.

Но если обнаружено, что в банках на пластинах белесые полосы – это сульфатация. Чтобы очистить полости, убрать осадок внизу, потребуется вскрыть крышку распиливанием.

Посмотрите видео, как долить электролит в необслуживаемый аккумулятор.

Долить электролит в гелевый аккумулятор

Необслуживаемый гелевый аккумулятор представляет тот же свинцовый аккумулятор, но электролит загустили, он находится в виде геля. С годами вследствие электрохимических паразитных реакций получается водород, выходящий из резинового вентиляционного клапана. Гель обезвоживается и уже неплотно прилегает к пластинам. Емкость АКБ уменьшается.

Долить воду в банки аккумулятора просто. Нужно снять наклейку на корпусе, снять колпачки-клапаны и закапать в каждую банку по 1,2 мл воды. Вода должна впитаться в желеобразную массу. Нужно время. Через полчаса, если вода выше поверхности пластин батареи – извлеките ее фильтром или шприцом.

Без сомнений, одним из важных узлов каждого транспортного средства является аккумулятор. Если говорить об автомобильных АКБ, они представляют собой расходную деталь с ограниченным сроком эксплуатации и рабочим ресурсом. Если не знать о том, как поменять электролит в аккумуляторе, в скором времени машина попросту перестанет нормально функционировать.

Устройство необслуживаемого аккумулятора автомобиля

Принципиальных отличий в конструкциях свинцово-кислотных аккумуляторов нет. Различается только технология производства. Необслуживаемые аккумуляторы изготавливаются из материалов повышенной чистоты с изменением состава сплава пластин электродов.

Благодаря тому, что удалось снизить газовыделение (электролитическое разложение воды электролита), стало возможным загерметизировать корпус батареи. В результате:

  • отсутствуют потери на испарение воды;
  • снижен до минимума поверхностный саморазряд
  • дополнительные полости под электродами не дают осыпающемуся шламу закоротить пластины.

Предназначение АКБ

Как известно, аккумулятор является недешевым элементом транспортных средств, поэтому покупка нового при повреждении или снижении эффективности работы старого — не совсем обдуманное решение. К счастью, выходом из такой неприятной ситуации может стать замена электролита в аккумуляторе. Если правильно выполнить эту процедуру, то за короткое время можно будет возвратить аккумулятору былые рабочие показатели.

Каждый автомобилист знает, что конструкция аккумулятора выглядит предельно просто и включает в себя ряд простых узлов. Среди них:

  1. Свинцовые пластины, которые покрывают весь корпус.
  2. Электролит — специальная жидкость, которая считается связующим элементом между этими пластинами.

В результате химической реакции два элемента накапливают в себе и проводят электрический ток.

Учитывая важность роли электролита, его объем и качество могут определять конечные рабочие свойства АКБ. Речь идет не только о показателях вырабатываемой энергии, но и напряжения. Если уровень вещества начинает снижаться, а качество падать, это может существенно ухудшить рабочие показатели АКБ.

Деформация пластин из свинца считается довольно распространенным явлением, и именно снижение качества электролита вызывает ослабевание химической реакции. В конечном итоге в аккумуляторе возникают осадки, помутнение и всевозможные испарения, что приводит к таким неприятностям, как отсутствие взаимодействия элементов для выработки энергии. Чтобы возвратить былую эффективность работы детали, важно как можно быстрее осуществить замену жидкости.

Причины изменения объема жидкости

На протяжении эксплуатации объем электролита АКБ снижается. Интенсивность испарения воды зависит от условий, при которых используется агрегат. При уменьшении количества аккумуляторной жидкости повышается концентрация кислоты непосредственно на пластинах. Это агрессивное вещество разъедает свинец, а его соли образуют осадок на решетках и дне. Происходит сульфатация, короткое замыкание, обрыв электрической цепи.

Уменьшение уровня жидкости аккумулятора происходит по следующим причинам:

  • эксплуатация летом при высоких температурах окружающего воздуха приводит к интенсивному испарению воды на фоне повышения плотности электролита;
  • механическое повреждение корпуса батареи приводит к вытеканию аккумуляторной жидкости;
  • при агрессивной езде по бездорожью, переворачивании аккумулятора происходят потери электролита. Только при таких случаях допускается подливать его, а не воду;
  • выход из строя автомобильного генератора, реле зарядки нередко приводит к перезаряду, гидролизу, который сопровождается кипением. При этом испаряется вода, повышается плотность аккумуляторной жидкости.

Таким образом, чтобы продлить срок службы стартерного аккумулятора, необходимо контролировать плотность, количество электролита, а также работу автомобильной системы зарядки.

Разряженный агрегат категорически нельзя эксплуатировать на автомобиле, поскольку в таком случае сила проходящего через пластины тока значительно увеличивается. Это приводит к опаданию активной массы с аккумуляторных решеток, короблению пластин, испарению воды, выходу из строя рабочего агрегата.

Возможные неисправности

В большинстве случаев, автомобильные аккумуляторы страдают от такой проблемы, как потеря плотности. Неприятность объясняется самыми различными причинами, а именно:

  1. Старением.
  2. Сульфатацией пластин.
  3. Неправильным обслуживанием.

Самым распространенным фактором считается сульфатация пластин, которую вызывает постоянное отсутствие правильной зарядки. Чтобы понять принцип разрушения, достаточно вспомнить школьную химию и оценить те процессы, которые происходят в устройстве.

Как известно, внутри АКБ расположены свинцовые решетки, которые, в свою очередь, наполнены диоксидом свинца. При разряде начинается восстановление оксида свинца на катоде и окисление (обратный процесс) на аноде. Простыми словами — на плюсе и минусе. И в первом, и во втором случае, начинается образование сульфата свинца, а плотность серной кислоты стремительно падает.

Многие владельцы автомобилей часто допускают большую ошибку — замерив показатели плотности, они начинают доливать электролит, повышая плотность до требуемого уровня. В результате происходит дальнейшая сульфатация и полное повреждение аккумулятора.

Специалисты советуют приступать к замеру плотности исключительно на полностью заряженном устройстве с нормальным качеством кислоты. Даже если встроенный аккумулятор указывает на 100% заряд, это может быть неточно.

Особенности замены

К сожалению, не все автомобилисты знают, можно ли менять электролит в аккумуляторе своего транспортного средства. К тому же, в кругу более опытных специалистов бродят разногласия по поводу необходимости этой процедуры. Существуют два мнения:

  1. Заменять электролит полностью бесполезно и даже опасно. Лучше покупать новый элемент.
  2. Замена электролита — залог успешной работы аккумулятора и очень важное действие, которое нужно проводить как можно чаще.

В принципе, оба высказывания имеют право на жизнь.

При наличии финансовых возможностей, покупка нового аккумулятора — отличное решение, так как новая модель будет работать гораздо эффективнее чем старая, даже отремонтированная. Но далеко не каждый владелец авто может позволить себе такое недешевое удовольствие, поэтому остается лишь вовремя заменять электролит и стараться следить за состоянием батареи.

К замене жидкости внутри АКБ нужно приступать только при таких обстоятельствах:

  1. Если она помутнела и потеряла свой базовый оттенок.
  2. Если на дне появился характерный осадок.
  3. Если ее уровень сильно снизился. Кстати, в таком случае можно просто долить электролит, но осадок или помутнения должны полностью отсутствовать.

При отсутствии таких проблем осуществлять замену электролита самостоятельными усилиями, не имея надлежащего опыта, категорически запрещено.

Любая ошибка может стать причиной серьезной поломки важных узлов автомобиля, а также снижения эффективности работы аккумуляторной батареи. Но если продуктивность работы узла находится на низком уровне, правильная замена может стать лучшей «реанимацией».

Что лучше, обычный аккумулятор или необслуживаемый?

Если автомобиль отвечает перечисленным требованиям, то ответ однозначный, новый кальциевый аккумулятор гораздо лучше. Такие АКБ снимают с автолюбителя часть обязанностей, улучшается надежность запуска автомобиля.

Другое дело – автомобиль с устаревшей системой бортового питания. В старых отечественных и зарубежных моделях с релейной системой регулировки напряжения не обеспечивается необходимая стабилизация тока заряда на клеммах АКБ. В результате возникает или недозаряд или перезаряд со всеми вытекающими последствиями. Обслуживание новых аккумуляторов затруднено или невозможно. При этом батареи часто не отрабатывают даже гарантийный срок эксплуатации.

Очистка аккумулятора

Если же автомобилист решился на работу и теперь пытается понять, как поменять кислоту в аккумуляторе, ему важно правильно следовать за пошаговыми инструкциями и поэтапно переходить от одного действия к следующему.

Для начала нужно провести несколько подготовительных мероприятий, а именно — извлечение электролита из банок. Учитывая агрессивность среды, в которой будет осуществляться процедура, начинать ее без применения защитных средств категорически запрещено.

Итак, для повышения собственной безопасности нужно взять:

  1. Защитные резиновые перчатки.
  2. Резиновую грушу.
  3. Тару для слива.
  4. Ветошь.

Дальше необходимо учитывать руководство и не упускать важных моментов. Чтобы освободить батарею и обеспечить себе доступ к банкам, нужно изъять клеммы и переместить конструкцию на ровную поверхность. Затем следует снять защитную полоску и отвинтить пробки на банках.

Важно отметить, что некоторые модели АКБ не позволяют автомобилистам свободно добираться к банкам, т. к. они являются неразборными. В этом случае придется просверлить в корпусе специальные отверстия, через которые будет подаваться жидкость. Для этой цели применяется дрель.

После выполнения таких действий остается отсосать с помощью резиновой груши старую кислоту, полностью опустошив банки. Ненужную жидкость выливают в любую подходящую тару. На этом этапе важно соблюдать повышенную осторожность: контакт кислоты с кожей может привести к плачевным последствиям. Если же это произошло, важно как можно быстрее обработать пораженный участок кожи мыльным раствором.

В случае если внутри резервуаров аккумулятора присутствует значительный осадок, нельзя переворачивать его для слития кислоты. Если частицы окажутся на контактах, это может привести к «пробою», после чего восстановление устройства станет практически невозможным.

Если резервуары будут полностью опустошены от старой кислоты, необходимо избавиться от налета и осадка с помощью дистиллированной воды. Как известно, подобная жидкость представляет собой мощный диэлектрик, который снижает риск появления пробоя.

Можно даже осторожно потрясти аккумулятор после заполнения банок, чтобы поднять осадок и остатки старой жидкости. Затем образованную консистенцию выливают.

Подготовка кислоты

Важно понимать, что взять любой электролит и залить его в резервуар нельзя. Для этой цели нужно подобрать специальную кислоту, которая соответствует строгим характеристикам. И одна из них заключается в плотности.

Желательно, чтобы показатель плотности составлял 1,28 г на кубический сантиметр. Для определения точных данных нужно использовать ареометр. Не секрет, что многие магазинные модели обладают плотностью 1,40 г, поэтому на этапе покупки важно уточнить этот момент.

Опытные автомобилисты создают электролит своими руками, но его качество далеко от желаемого и находится на низком уровне. В результате эффективность работы аккумулятора оказывается под угрозой.

Чтобы избежать рисков, лучше приобрести готовую продукцию.

После завершения очистки банок и подготовительных этапов, можно переходить к заливке электролита. В процессе выполнения этого действия применяются:

Как из необслуживаемого аккумулятора сделать обслуживаемый

Приходит время и автовладельца перестают устраивать характеристики аккумуляторной батареи. Если у вас есть АКБ закрытого типа не стоит её выбрасывать и приобретать новую. Вы можете сделать её обслуживаемой, если осуществите вскрытие крышки тем способом, который мы описали выше. Это позволит осуществлять ряд процедур, необходимых для поддержания работоспособности источника питания.

Возможность проверки и изменения уровня электролита — один из признаков обслуживаемости аккумулятора. АКБ закрытого типа оснащены индикатором, который позволяет увидеть уровень электролита. Некоторые корпуса сделаны из полупрозрачных материалов или характеризуются наличием меток, что помогает следить за количеством раствора во всех банках. Уровень электролита можно проверить с помощью специальной трубки или шприца, введя их в отверстия, сделанные в крышке. Нормальное количество раствора соотносится со значениями 10–12 миллиметров жидкости над пластинами.

Не стоит забывать, что не только уровень кислоты, но и её плотность являются важной характеристикой работоспособности батареи. Получить данные о плотности раствора можно с помощью ареометра. Возьмите шприц, введите его в отверстие на крышке и осуществите забор электролита из банки. Влейте в ареометр и посмотрите показания. Слишком низкая плотность (менее 1,22 г/см3 при температуре до +6) не даёт возможности аккумулятору полноценно работать и говорит о малом количестве электролита и необходимости его восполнения. Повышенная плотность или недостаточный уровень раствора требует доливки дистиллированной воды.

Проверка устройства

Если прошло двое суток, можно приступать к мероприятиям по зарядке. Для первой зарядки берется специальный прибор, выдающий напряжение в 12 В. На этом этапе необходимо изъять защитные пробки и присоединить зарядное устройство к батарее. Затем начинается циклическая зарядка, которая состоит из повторов схемы «заряд-разряд».

Оптимальный показатель тока не должен превышать 0.1 ампера. Для первой процедуры таких показателей вполне хватает. Аккумулятор заряжают до тех пор, пока уровень заряда не достигнет 100%. Для проверки берется вольтметр, с помощью которого осуществляется определение напряжения каждой секции или клеммы. Важно убедиться, что на каждой секции напряжение не ниже 2.3 В, а на клеммах — не ниже 13 В.

Соблюдая эти рекомендации, можно без особых трудностей повысить технические показатели старого устройства. Своевременная замена электролита позволит вернуть аккумулятору прежнюю работоспособность и сделать его более продуктивным. Если же процедура не решает проблемы, а причина плохой функциональности объясняется не жидкостью, а самими пластинами, то реанимационные работы не принесут никакого успеха.

Единственный выход из ситуации — приобретение нового аппарата, т. к. старый не подлежит восстановления.

Как зарядить необслуживаемый автомобильный аккумулятор

Итак, если классический аккумулятор можно при соблюдении мер предосторожности заряжать практически любым источником постоянного тока (простейший «дедовский» способ – лампочка с последовательно подключенным диодом, включаемая прямо в электросеть), то необслуживаемому аккумулятору необходим источник стабилизированного напряжения, имеющий возможность ограничения и контроля зарядного тока.

При зарядке необслуживаемой батареи напряжение не должно превышать 14,5-14,8 В. Исправный аккумулятор в этом случае принимает ток, определяемый его внутренним сопротивлением – будучи максимальным в начале цикла, он постепенно снижается. На этом основан принцип действия автоматических зарядных устройств – при снижении тока до уровня 200 миллиампер цикл зарядки прерывается.

Если же зарядное устройство превысит заданное напряжение, то параллельно с зарядкой аккумулятора начнется разложение воды, входящей в состав электролита. В случае с необслуживаемыми аккумуляторами это особенно опасно тем, что увидеть «кипение» невозможно: в классическом аккумуляторе процесс газообразования виден через вывернутые пробки, здесь же они либо не могут выворачиваться, либо закрыты крышкой батареи.

Видео: Как заряжать кальциевый аккумулятор автомобиля — ПРАВИЛЬНО! Просто о сложном

Когда необслуживаемый аккумулятор значительно разряжен, то практически вся серная кислота из электролита израсходована на реакцию с пластинами банок, и фактически между ними находится вода с малой примесью солей свинца и кислоты. Попытка подключения зарядного устройства без ограничения тока приведет к тому, что начнется бурный электролиз воды, и к моменту начала заряда ее уровень снизится. Несколько таких циклов приведут к преждевременному выходу необслуживаемой батареи из строя.

Читать также: Рычажный трубогиб для медных труб

Поэтому зарядное устройство должно иметь возможность ограничения зарядного тока – для стандартного цикла зарядки безопасным считается ток, не превышающий 1/10 от численного значения емкости аккумулятора в ампер-часах. Для распространенных 55-амперных батарей ток не должен превышать 5,5 А, для 75-амперных – 7,5, и так далее. Если же зарядное устройство не имеет плавной регулировки максимального тока, то устанавливается ближайшее меньшее значение. При подключении зарядного устройства к сильно разряженному аккумулятору ток нужно ограничивать на значении, вдвое меньшем, чем при нормальном цикле.

Существуют два принципа работы зарядных устройств:

  1. зарядка постоянным током;
  2. и импульсным.

В первом случае устройство регулирует напряжение на своих клеммах, добиваясь, чтобы через аккумулятор протекал заданный ток. Во втором устройство подает короткие импульсы, прерывая их по достижению предельного тока – так как электрохимические процессы в аккумуляторе имеют определенную инерцию, ток нарастает не моментально.

У каждого из вариантов зарядки есть свои преимущества – импульсная быстрее «оживляет» разряженную батарею, но стандартный цикл зарядки проходит медленнее, чем при зарядке постоянным током. В то же время простые автоматические устройства без импульсного режима зачастую неспособны начать зарядку разряженной батареи. Поэтому наиболее оптимальный выбор для зарядки необслуживаемого аккумулятора – это или устройство с принудительным включением импульсного режима, или автоматически включающее его в начале зарядного цикла.

Примитивные же зарядные устройства, не имеющие возможности ограничения тока и автоматического отключения по его снижению, для зарядки необслуживаемых батарей могут использоваться только в крайнем случае.

Покупать новый или чинить старый — дилемма автовладельцев, у которых вышел из строя аккумулятор. У владельцев современных необслуживаемых батарей, казалось бы, выбор ясен — покупать. Смекалка и знания устройства аккумуляторов помогут продлить срок службы «сдохшего» источника энергии.

Зима — настоящее испытание для автолюбителей. Исправный автомобиль может не завестись поутру, если осечку даст аккумуляторная батарея. Если вы приобрели необслуживаемый, а он вас подвел — не стоит расстраиваться, его можно зарядить, проверить и использовать дальше.

Полезные советы по эксплуатации

Чтобы не задаваться вопросом, можно ли поменять электролит в аккумуляторе, лучше правильно следить за его состоянием и учитывать основные правила эксплуатации. Одним из наиболее важных является обеспечение сбалансированного температурного режима: при опускании температуры до определенных отметок кислота может замерзать.

Минимальная плотность АКБ при температуре до минус 30 градусов Цельсия должна быть равна 1,29 г. Если температура ниже — до 1,32 г. Если оптимальные показатели отсутствуют, то придется восстановить их посредством добавления серной кислоты.

Дело в том, что электролит с меньшей плотностью очень быстро подвергнется замерзанию и станет непригодным для дальнейшей эксплуатации, так как любые химические процессы перестанут в нем осуществляться. При повышении плотности снижается точка замерзания. Если же так сложилось, что внутри аккумулятора появился лед, остается только надеяться, что он не деформировал свинцовые пластины. При появлении повреждений придется провести ремонт или полную замену батареи.

Зная о том, как правильно поменять электролит в аккумуляторе, можно избежать необходимости обращаться в сервисный центр и переплачивать за дорогой ремонт.

Всем привет! Думал, делать б/журнал об этом или нет…ничего нового и сложного нет, но проблема весьма распространнёная, поэтому решил выложить, может кому пригодиться)) В холодное время года, у многих бывает проблема с зарядом аккумулятора, зарядка при замерах тестером находиться в пределах нормы, но после стоянки, за ночь, аккумулятор сильно разряжен и стартер при запуске, уже не так весело крутит. Многие начинают измерять ток утечки и искать виновника разрядки. Но не всегда причиной быстрого разряда являются потребители, а очень часто оказывается проблема в самом аккумуляторе и много времени и нервов будет съэкономлено на ненужные поиски. Поэтому при обнаружении быстрого разряда, первым делом нужно измерить тестером зарядный ток, выдаваемый генератором. Сейчас у многих стоят вольтметры, так что приблизительная картина видна сразу и если зарядка в норме, следующим действием необходимо измерить плотность электролита в аккумуляторе. Подобное случилось этой зимой, после морозов и с моими аккумуляторами, причем сразу с двумя одновременно. Умирать им ещё рановато, одному три года, другому четыре. Так как перезарядки небыло, недозарядки тоже, да и в холодное время я раз в две -три недели, подключаю зарядное устройство, следов сульфатации нет, электролит прозрачный, измерив плотность, ареометр показал плотность 1.1

было решено поднять плотность электролита частичной заменой. Электролит пришлось заказывать в другом городе, местные реализаторы совсем совесть потеряли, цену завысили в три раза — 28-30 грв за литр, тогда как цена ему 8 с копейками, поэтому заказал «про запас» две баклажки по 5л (6кг).

Виды электролита

Автомобили комплектуются такими аккумуляторами:

  • WET (свинцово-кислотные акб). Электролит представлен в виде водного раствора, включающего серную кислоту.
  • AGM. Отличаются тем, что входящее в состав стекловолокно пропитано электролитическим составом.
  • GEL (гелиевый акб). Электролит представлен в виде геля. Для этого в серно-водный раствор введена окись кремния.

Определять, сколько электролита в аккумуляторе, необходимо, если речь идет о свинцово-кислотных источниках питания.

Особенности проверки уровня электролита в автомобильном аккумуляторе

Регулярно проверяя уровень электролита в аккумуляторе, контролируя плотность, можно поддерживать автотранспорт, отдельные узлы в работоспособном состоянии. При необходимости проводят корректировку плотности, увеличивают или уменьшают уровень электролитического состава. Ведь использование источника питания, в котором электролитической жидкости меньше нормы, приводит к пагубным последствиям.

Просмотрите интересное видео про уровень электролита.

Проверка уровня электролита

Информация о том, какой уровень электролита должен быть, присутствует в технической документации, которая прилагается к автотранспортному средству. Для проверки и контроля используется два метода, каждый из которых имеет свои особенности:

  • На корпусе АКБ сосредоточены отметки max и min. Если корпус подготовлен из прозрачного материала, то легко определить количество электролитического состава. На основании полученной информации нужно принимать решение об уменьшении, увеличении дистиллированной воды. Такой способ малоэффективен, если корпус окрашен в черный цвет.
  • Уровень электролита в акб проверяют с помощью стеклянной, пластиковой трубочки. Диаметр трубки – 3–5 мм. Перед тем как ввести трубку, изымается пробка. Опускается трубка до момента соприкосновения с пластинами. Норма – 12 мм. Такая процедура проводится для каждой банки, входящей в состав аккумуляторной батареи.

Избыток электролитического состава изымается с помощью шприца. Этот же инструмент используется для введения подготовленного электролита или дистиллированной воды.

Для того чтобы определить уровень жидкости в необслуживаемых источниках питания, используются отметки на поверхности акб. Дополнительно применяется индикатор заряда.

Причины снижения уровня электролита

  1. Чрезмерное увеличение выдаваемого генератором напряжения.
  2. Деформация корпуса аккумуляторной батареи, появление микротрещин или других дефектов.
  3. КЗ внутри источника питания.
  4. Наличие свинцового осадка и мусора.

В кислотно-свинцовых источниках питания уровень дистиллята постепенно снижается. При этом неопытные автомобилисты пытаются исправить ситуацию, добавив водный раствор с введенной серной кислотой. В результате, увеличивается уровень и плотность. Это приводит к тому, что аккумуляторная батарея быстро выходит из строя, внутренняя часть стремительно разрушается.

Неправильно определенный уровень приводит к таким последствиям:

  • Разрушение свинцовых пластин, формирование остатков и шлама.
  • Со временем образуются мостики между включенными в состав пластинами. Такие мостики способствуют возникновению КЗ, снижению мощности.
  • Появление подтеков, затрудняющих эксплуатацию аккумуляторной батареи.
  • Окисление основных контактов.
  • Выход из строя аккумуляторной батареи.

Определение плотности электролитического состава

К проверке плотности приступают после тщательной зарядки аккумуляторной батареи. Предварительно подготавливается прибор, при помощи которого устанавливается степень плотности. Чаще всего используется ареометр.

С банок, сосредоточенных в корпусе источника питания, изымаются пробки. В отверстие помещается ареометр, набирается немного электролитического состава. Поплавок, включенный в состав, содержит шкалу с соответствующими отметками, которая используется для определения степени плотности. Оптимальный показатель – 1,29-1,3 г/см3.

Для понижения степени плотности электролитического состава допускается применение дистиллята, который реализуется в специальных магазинах, аптеках. Процедура введения дистиллированной воды осуществляется поэтапно. При этом в каждой банке периодически измеряется этот показатель.

Повысить плотность сложнее, чем увеличить уровень электролита в акб. Ведь изначально изымается часть состава при помощи ареометра, другого инструмента. После этого вводится смесь с соответствующей плотностью. Иногда возникает потребность в полной замене жидкости. Выявить это можно, если знать, как проверить уровень, степень плотности.

Процедура замены электролита

Полную замену проводят при условии, что уровень плотности значительно снизился. Процедура имеет особенности, правила. Перед выполнением нужно подготовить:

  • Смесь с соответствующей плотностью (около 1,29 г/см3).
  • Тара, подходящая для размещения старого раствора.
  • Ареометр или другой инструмент.

Запрещено переворачивать источник питания для последующего удаления водно-серного раствора. Ведь это приводит к разрушению свинцовых пластин, образованию мостиков и подтеков, замыканию.

Перед работой должно быть подготовлено все необходимое для защиты: перчатки из плотной резины, прочная одежда, защитные очки. Ведь попадание смеси на кожу провоцирует образование химических ожогов.

Для откачки старой смеси применяют «грушу» или другой инструмент. Откачиваемую жидкость помещают в специальную тару, отличающуюся стойкостью, прочностью.

Заливку новой смеси выполняют поэтапно, соблюдая правила, нормы.

Меры безопасности

При работе с растворами, в состав которых входит серная кислота, требуется выполнение таких правил:

  • Все предметы одежды, элементы должны быть подготовлены из прочности и стойкого материала.
  • Для хранения использованной электролитической смеси применяется стеклянная либо полиэтиленовая тара, оснащенная плотными крышками и оплеткой.
  • Для заливки используется только качественный состав, реализуемый в специальных магазинах. Самостоятельная подготовка приемлема при условии, что человек обладает требуемым опытом и знаниями, инструментами.
  • Замена электролитической смеси проводится только после отключения аккумуляторной батареи, ее демонтажа.
  • Перед подключением источника питания проверяется состояние выводов, ликвидируются окислы.

Точно определить уровень, плотность электролитического состава несложно. Достаточно соблюдать правила и рекомендации, подготовленные специалистами. С особой тщательностью нужно выбирать помещение, в котором будут проводиться все работы. В помещении должна быть вентиляционная система. Ведь в смеси присутствует кислота, другие вещества.

Своевременная проверка основных показателей – залог эффективной работы аккумуляторной батареи.

Видео про проверку электролита в аккумуляторе

Проверка и обслуживание кислотных аккумуляторных батарей

Маркировка аккумуляторных батарей читается так. Например, 6СТ54 цифра 6 показывает, что в батарее 6 аккумуляторов (банок), включенных последовательно, буквы СТ означают, что аккумуляторная батарея стартерная, а цифра 54 показывает номинальную емкость в амперчасах. При полной маркировке аккумуляторов вводятся дополнительные буквы, например, ¦—3СТ70ПДС; 3СТ70ПМСЗ.

Они указывают на материал, из которого изготовлены баки и сепараторы. Так, П — асфальтопеновый с кислотоупорной вставкой, Э — эбонит, материал сепараторов, М — мипласт, Д —дерево, Р— мипор, С — стекловойлок, МС — мипласт, комбинированный со стекловойлоком, ДС — дерево, комбинированное со стекловойлоком. Буква 3 обозначает, что батарея сухозаряжена.

Нужно иметь в виду, что аккумуляторные батареи работают в тяжелых режимах, а своевременное проведение технического обслуживания, их правильная эксплуатация имеют большое значение. Так, запуск двигателя стартером следует производить коротким включе. нием на 4—5 с. Перед повторным включением стартера следует сделать перерыв на 30—35 с. Это необходимо для восстановления емкости батареи. Длительное пользование стартером требует расхода тока большой силы. Происходит резкое и неравномерное расширение активной массы пластин. Она разрыхляется и сползает, а пластины коробятся.

Разрушаются пластины также при зарядке аккумуляторов большим током. Перезарядка повышает температуру и плотность электролита. При движении от сильной тряски активная масса положительных пластин разрушается. Высыпавшаяся масса скапливается на дне бака и замыкает пластины. Признак короткого замыкания — быстрый саморазряд и закипание электролита при зарядке аккумуляторной батареи.

Чтобы продлить срок службы аккумуляторной батареи, при каждом ТО1 необходимо очищать от грязи, пыли и электролита, иначе может произойти короткое замыкание между выводными штырями аккумуляторной батареи. Очищать батареи следует ветошью, смоченной в 10процентном растворе аммиака (нашатырном спирте) или соды. Затем батареи насухо вытирают чистой ветошью.

Следует проверить крепление батареи в гнезде. Под ней должна находиться подкладка из войлока или резины. Гайки крепления следует затягивать равномерно. Затягивать их излишне не рекомендуется, поскольку могут появиться трещины в баке аккумуляторной батареи.

Необходимо систематически проверять пробки аккумуляторов и состояние вентиляционных отверстий, уровень электролита в банках, крепления наконечников на выводных штырях, наличие окислов на них.

При втором техническом обслуживании проверяют плотность электролита в каждом из аккумуляторов и степень заряда элементов батареи.

Высоту уровня электролита проверяют стеклянной трубкой диаметром 3—5 мм с двумя рисками на расстоянии 10—15 мм от конца. Когда выворачивают пробку заливного отверстия аккумулятора, трубку опускают до упора в пластины. Зажимают ее верхнее отверстие пальцем, вынимают. Высота столбика в трубке электролита должна соответствовать высоте уровня электролита над верхним краем пластин, которая равна 10—15 мм. Как исключение, высоту уровня электролита можно проверить чистой деревянной палочкой.

Если уровень электролита находится ниже указанных величин, необходимо долить дистиллированную воду. Доливать в аккумуляторы электролит можно только в том случае, когда понижение уровня произошло изза его вытекания или расплескивания. Уровень электролита рекомендуется проверять в аккумуляторах летом через 5—6 дней, зимой через 10—15 дней.

Проверка плотности электролита производится с помощью денсиметра. Состоит он из стеклянной трубки; внутри находится ареометр со шкалой. Для набора электролита служит резиновая груша. Выворачивают пробки отверстий для залива электролита в аккумуляторы, сжимают резиновую грушу и погружают эбонитовый наконечник в электролит. Затем отпускают грушу, выжидают, пока уровень перестанет повышаться и ареометр не всплывет. Деление, до которого погружается ареометр, показывает плотность электролита.

Отсчет следует делать по нижнему краю вогнутой поверхности электролита. Если доливали воду, то сразу проверять не следует плотность электролита. Плотность электролита для заряженных аккумуляторных батарей на всех аккумуляторах (банках) должна быть одинаковой (смотреть статью под номером32).

В зависимости от температуры электролита плотность его меняется. Если температура электролита выше или ниже 15°С, то в полученное значение плотности необходимо внести температурную поправку, которая приведена в таблице 33. При температуре электролита более 15еС поправку нужно прибавлять к показаниям ареометра, при температуре электролита менее 15°С — вычесть, т. е. на каждые 15°С наблюдаются изменения 0,01. К примеру, плотность электролита при проверке оказалась равной 1,26. Температура электролита равна —15°С. Поправка при температуре —15°С составляет —0,02. Следовательно, приведенная к 15°С плотность равна 1,26—0,02=1,24.

Проверка напряжения батареи производится по плотности электролита один раз в месяц. Более точный результат проверки получают при пользовании нагрузочной вилкой модели ЛЭ2. Время выдержки —5—6 с. Если окажется, что аккумуляторная батарея разряжена более чем на 50% летом и более чем на 25% зимой, то ее нужно снять с автомобиля и поставить на зарядку.

Если проверяют батарею емкостью 40—65 амперчасов, включают большее сопротивление (0,018—0,020 Ом), которое находится между ножками нагрузочной вилки. Если производится проверка батареи емкостью 70—100 амперчасов, включается меньшее сопротивление (0,010—0,012 Ом). А при проверке батареи емкостью более 100 амперчасов следует включить одновременно оба сопротивления и по показаниям вольтметра судить о степени заряженности аккумуляторной батареи.

Приготавливать электролит следует только в кислотоупорной посуде (в эбонитовых, фаянсовых, керамических сосудах). Готовить электролит в стеклянной посуде нельзя, так как при разогреве раствора она может дать трещину.

Для приготовления электролита в посуду наливают дистиллированную воду, затем, непрерывно помешивая стеклянной палочкой воду, в нее вливают тонкой струей серную кислоту. Потребное коли чество серной кислоты для приготовления электролита приведено в таблице 34.

Приготавливая электролит, нужно помнить, что нельзя вливать воду в кислоту, так как вода, соприкасаясь с кислотой, быстро разлагается, вскипает и разбрызгивается. Это может привести к несчастному случаю. После приготовления электролит оставляют на 16— 20 часов, чтобы он остыл, а осадки выпали на дно. После отстоя осветленную чистую посуду, проверяют плотность, а если

часть сливают в нужно — доводят до нормы.

что нужно делать, а что категорически нельзя

Тяговые аккумуляторы — это основной элемент электрической складской техники, такой как самоходные штабелеры, электропогрузчики и тележки. Задача АКБ заключается в обеспечении непрерывной работы этой техники. Но для того, чтобы аккумулятор работал долго и продуктивно, нужно придерживаться ряда правил, будь то ежедневные или ежегодные задачи.

Разделение операций: день, неделя, месяц, год

Примерное расписание того, что нужно делать, если у вас на складе работает электрическая техника с тяговыми аккумуляторами.

Каждый день — заряжать АКБ после разряда, проверять уровень электролита и доливать, если это необходимо.

Каждую неделю — осматривать батарею на предмет визуальных отклонений от нормы, чистить АКБ от грязи и желательно проводить выравнивающий заряд.

Каждый месяц — вести журнал на предмет плотности электролита и значение напряжений в банках, проверять исправность зарядного устройства.

Каждый год — измерять сопротивление изоляции между корпусом техники и АКБ. Этот показатель не должен быть меньше чем 50 Ом на один вольт номинального напряжения.

Про электролит

Электролит заливают только один раз — на заводе. Во многом именно от его качества зависит насколько стабильно и долго будет работать батарея. Когда идет зарядка вода распадается на кислород и водород, что приводит визуальному «кипению» электролита и снижения его уровня в ячейке. Из-за этого в ячейки следует доливать дистиллированную воду, чтобы восстановить уровень электролита.

Долив дистиллированной воды в ячейки АКБ

Главные правила эксплуатации тягового аккумулятора

Нельзя

Оставлять батарею в разряженном состоянии надолго. Из-за этого происходит сульфатизация пластин, что снижает емкость батареи и ее рабочий ресурс.

Разряжать АКБ более чем на 80%, для гелевых — 60%. Помимо сульфатизации пластин, это еще приводит к увеличению времени, необходимого для полной зарядки аккумулятора и его перегреву. Итог — ощутимое снижение рабочего ресурса.

Доливать обычную воду или электролит. Обычная вода содержит в своем составе много примесей, которые негативно влияют на аккумулятор. Долив электролита не приведет к приросту емкости, а только — к коррозии  пластин.

Нужно

После разряда батареи поставить ее на подзарядку и проследить, чтобы она корректно зарядилась. Обязательно должно быть отдельное помещение, одведенное только под зарядку АКБ.

Контролировать уровень заряда батареи в процессе работы. Для этого в машине, обычно, предусмотрен соответствующий датчик. Проконтролируйте, чтобы он был исправен и показывал корректные данные.

Доливать дистиллированную воду. При чем нужно постоянно следить за уровнем электролита и осуществлять своевременный долив. Некоторые тяговые АКБ оснащают автоматизированной системой долива. Как правило, они служат дольше.

Очистка аккумулятора

В процессе зарядки АКБ немного электролита выступает из батареи, при достижении достаточного напряжении. Из-за этого на крышках банок образуется токопроводящий слой и появляются так называемые блуждающие токи. Они увеличивают показатель саморазряда аккумулятора, даже при простое. Поэтому чистить аккумулятор нужно регулярно.

Обслуживать АКБ стоит химзащите: фартуке, перчатках и маске (лучше с респиратором)

Журналы контроля аккумуляторов

На примере парка электропогрузчиков, ведение журнала выглядит следующим образом:

Для каждого погрузчика используют одну-две батареи, которые нумеруют 1а, 1б. То есть, для погрузчика 1, батареи а и б.
Ведение такого простого журнала позволяет избежать эксплуатации недозаряженных аккумуляторов и спрогнозировать время для замены АКБ до того как она полностью выйдет из строя.

Есть еще журнал для сервисной службы, ведение которого — обязательное условие для гарантийного обслуживания. Выглядит он примерно так:

Обычно для ведения журналов, приема-выдачи аккумуляторов, их зарядки и долива воды нанимают отдельного человека или двух (в зависимости от количества рабочих смен на предприятии).

Что делать со старым тяговым аккумулятором

Старичок отработался

Согласно закону Украины «Про хімічні джерела струму», любой кислотный аккумулятор нужно обязательно утилизировать должным образом. Этим занимаются специальные компании по переработке. Но не спешите отдавать им свою отработанную тяговую батарею. Вы еще можете получить с нее выгоду! Когда решите покупать новую батарею, обращайтесь к нам. Мы можем предложить вам 2 интересных решения.

Выкуп отработанного аккумулятора

Мы выкупим у вас старую батарею и предложим новую со скидкой. При этом мы берем на себя обязанности по утилизации старого аккумулятора. Какая нам с этого выгода? После утилизации АКБ, все вредные вещества нейтрализуются, а вторичное сырье можно использовать повторно. За счет этого и формируется наша выгода и ваша скидка.

Подробнее про процесс утилизации мы писали — в этом материале

Перепаковка аккумулятора

Что это такое

Это замена аккумуляторных элементов на новые. При этом сам ящик остается старый. Его очищают и окрашивают. Главное, чтобы у ящика не было повреждений: трещин, вмятин, дыр или непоправимых следов сильного окисления.

Почему это выгодно

Тогда вы можете неплохо сэкономить на новой АКБ. Дело в том, что перепакованная батарея по своей производительности не уступает новой, а стоимость услуги вместе с новыми банками примерно на 10% ниже, покупки нового аккумулятора. Мы предоставляем такую услугу:

Читайте подробнее

Про типы аккумуляторных батарей

Сейчас пока еще самые распространенные и востребованные аккумуляторы — свинцово-кислотные. Все эти советы и правила работают как раз с ними. Но на рынке уже есть новый игрок — литий-ионные батареи. Они очень сильно обгоняют своих предшественников по всем параметрам, начиная от срока службы, заканчивая простотой в обслуживании.

Литий-ионный тяговый аккумулятор

Единственный их существенных недостаток — цена. Мало кто может себе позволить такой вклад в далекую перспективу (а именно так они себя окупят).

Ознакомиться с каталогом тяговых аккумуляторов вы можете кнопке ниже:

  Перейти в каталог тяговых аккумуляторов

Новое поколение «проточных батарей» может в конечном итоге поддерживать сеть, питаемую солнцем и ветром | Наука

Аккумуляторы уже питают электронику, инструменты и автомобили; вскоре они смогут поддерживать всю электрическую сеть. С появлением энергии ветра и солнца энергетические компании ищут способы поддерживать поток электронов, когда солнце не светит и ветер стихает. Гигантские устройства, называемые проточными батареями, использующие резервуары с электролитами, способные накапливать достаточно электроэнергии для питания тысяч домов в течение многих часов, могут стать ответом. Но в большинстве проточных батарей используется ванадий, довольно редкий и дорогой металл, а альтернативы недолговечны и токсичны.

На прошлой неделе исследователи сообщили о преодолении многих из этих недостатков с помощью потенциально дешевой, долговечной и безопасной проточной батареи. Работа является частью волны достижений, порождающих оптимизм в отношении того, что новое поколение проточных батарей скоро послужит опорой для широкомасштабного развертывания ветровой и солнечной энергии. «Сейчас в этой области достигнут значительный прогресс», — говорит Ульрих Шуберт, химик из Университета Фридриха Шиллера в Йене, Германия.

Литий-ионные аккумуляторы — такие же, как в ноутбуках и автомобилях Tesla, — имеют фору в сетевых приложениях. Литиевые батареи уже обеспечивают резервное питание для больниц, офисных парков и даже городов. Но они плохо масштабируются до больших размеров, необходимых для обеспечения резервного питания городов, говорит Майкл Перри, заместитель директора по электрохимическим энергетическим системам Исследовательского центра United Technologies в Ист-Хартфорде, штат Коннектикут.

Вот где на помощь приходят проточные батареи. Они накапливают электрический заряд в резервуарах с жидким электролитом, который прокачивается через электроды для извлечения электронов; отработанный электролит возвращается в бак.Когда солнечная панель или турбина вырабатывают электроны, насосы проталкивают отработанный электролит обратно через электроды, где электролит перезаряжается и возвращается в накопительный резервуар. Увеличение размеров батарей для хранения большей мощности просто требует больших резервуаров с электролитами. Ванадий стал популярным компонентом электролита, потому что металл надежно заряжается и разряжается в течение тысяч циклов. Например, Rongke Power в Даляне, Китай, строит крупнейшую в мире проточную ванадиевую батарею, которая должна быть введена в эксплуатацию в 2020 году.Аккумулятор будет хранить 800 мегаватт-часов энергии, что достаточно для питания тысяч домов. По данным исследовательской фирмы MarketsandMarkets, рынок проточных батарей, возглавляемый ванадиевыми элементами и еще одной разновидностью цинк-бромных элементов, может вырасти почти до 1 миллиарда долларов в год в течение следующих 5 лет.

Но в последние годы цены на ванадий выросли, и эксперты опасаются, что если спрос на ванадий резко возрастет, цены тоже вырастут. Ведущая альтернатива заменяет ванадий органическими соединениями, которые также захватывают и высвобождают электроны.Органические молекулы могут быть точно адаптированы для удовлетворения потребностей дизайнеров, говорит Тяньбяо Лю, эксперт по проточным батареям из Университета штата Юта в Логане. Но органика, как правило, разлагается и нуждается в замене через несколько месяцев, а некоторые соединения работают только с мощными кислыми или основными электролитами, которые могут разъедать насосы и оказаться опасными, если их резервуары протекут.

Исследователи сейчас находятся в разгаре «второй волны прогресса» в органических проточных батареях, говорит Шуберт. В июле группа под руководством материаловеда из Гарвардского университета Майкла Азиза сообщила в Дж , что они изобрели долгоживущую органическую молекулу, которая ежегодно теряет только 3% своей способности нести заряд. Хотя это все еще недостаточно стабильно, это был большой скачок по сравнению с предыдущими батареями с органическими проточными элементами, которые теряли примерно столько же каждый день, говорит Лю.

Железо, которое дешево и хорошо захватывает и отдает электроны, является еще одной многообещающей альтернативой. Например, такие батареи продает компания ESS в Портленде, штат Орегон. Но батареи ESS требуют электролитов, работающих при pH от одного до четырех, с кислотностью, близкой к кислотности уксуса.

C. Bickel/ Science

Лю и его коллеги разработали проточную батарею, работающую при нейтральном pH.Они начали с железосодержащего электролита, ферроцианида, который изучался в прошлом. Но в предыдущих ферроцианидных батареях электролит растворялся в воде, содержащей соли натрия или калия, которые обеспечивают движение положительно заряженных ионов через элемент, чтобы сбалансировать движение электронов во время зарядки и разрядки. Ферроцианид плохо растворяется в этих солевых растворах, что ограничивает электрическую емкость батареи.

Со Лю и его коллеги заменили соли соединением на основе азота, называемым аммонием, которое позволяет растворять как минимум в два раза больше ферроцианида, что удваивает емкость батареи.Полученная батарея не такая энергоемкая, как проточная ванадиевая батарея. Но в выпуске журнала Joule за последнюю неделю Лю и его коллеги сообщили, что их органическая проточная батарея на основе железа не проявляет признаков деградации после 1000 циклов зарядки-разрядки, что эквивалентно примерно 3 годам эксплуатации. А поскольку электролиты имеют нейтральный pH и основаны на воде, утечка, скорее всего, не нанесет ущерба окружающей среде.

«В целом это отличная работа, — говорит Цин Ван, материаловед из Национального университета Сингапура.Тем не менее, он и другие предупреждают, что батарея медленно заряжается и разряжается. Лю говорит, что он и его коллеги планируют протестировать другие добавки к электролиту, среди прочего, для повышения проводимости.

Еще слишком рано говорить о том, какой химический состав проточного аккумулятора (если вообще будет) будет поддерживать возобновляемую электросеть будущего. Другой претендент использует электролиты, изготовленные из металлсодержащих органических соединений, называемых полиоксометаллатами, которые сохраняют гораздо больше энергии в том же объеме, чем конкуренты. Например, в выпуске Nature Chemistry от 10 октября исследователи под руководством Лероя Кронина, химика из Университета Глазго в Соединенном Королевстве, сообщили о проточной полиоксометаллатной батарее, которая хранит в 40 раз больше заряда, чем ванадиевые элементы такой же объем.По словам Кронина, на данный момент недостатком является то, что эти электролиты очень вязкие, и поэтому их сложнее прокачивать через батарею. «Сегодня ни одна проточная батарея не удовлетворяет все потребности, — говорит Шуберт. Это означает, что есть еще много места для инноваций.

*Исправление, 21 ноября, 16:00: Эта история была обновлена, чтобы исправить название компании ESS, Inc.

%PDF-1.4 % 1 0 объект >поток 2016-04-27T14:47:38+02:00TeX2022-02-24T03:36:21-08:002022-02-24T03:36:21-08:00Это pdfTeX, версия 3. 1415926-1.40.10-2.2 (Tex Live 2009) kpathsea версия 5.0.0itext 4.2.0 by 1T3xTFALSApp 6.0-03DA-45E4-B1A4-288098FE0A03UUID: 8F8FD8FE-3241-4358-8E34-04646E0AED07

  • Kazunori Takada
  • конечный поток эндообъект 2 0 объект > эндообъект 3 0 объект >поток xWn6WCVqz [sJ_b%*JbK=3 A*kyQ~,T`iLgM0ǒ >__znjKz:qLɒ/S,4gvzv/PdSB4,8=

    >}?M t_u48C8=o֝Oc{^3ŏv?$Kcf;E46=mNjﲌzj;MuT_ob21 B~\RJNy,Qa1ZK+sЀ{~$tZMq8ل;\q> &k\#؍?l(48[kn:@pspH&6Ϥы>a2N’~ ~flhͬMgf h/sj{

    Техническая сторона – уход за герметичными свинцово-кислотными батареями и их питание

    У меня разрядился аккумулятор, что случилось?

    Перезаряд аккумуляторов сокращает срок их службы. Как только материал пластины полностью восстановлен (батарея заряжена), продолжение зарядки может привести к в избыточном газообразовании и уменьшенной мощности. Когда свинцово-кислотный аккумулятор полностью заряжен, продолжение зарядки приводит к разрушению электролита вниз и образуют водород и кислород. Это «кипячение» что мы наблюдаем при зарядке автомобильного аккумулятора на высокой скорости вблизи окончание перезарядки по времени. В этот момент происходят две плохие вещи: (1) В аккумуляторе образуется взрывоопасная газовая смесь и в случае герметичная свинцово-кислотная батарея , тепло и давление растут.Если давление становится достаточно большим, герметичные односторонние клапаны на аккумуляторе откроется и сбросит избыточное давление газа и, возможно, жидкий электролит. (2) В негерметичной жидкостной батарее электролит испаряется или преобразуется. на водород и кислород и теряется, но может быть восполнен. В необслуживаемый или герметичная батарея электролит потерян и не может быть заменен. Во всех свинцово-кислотных батареях потеря электролита означает потерю емкости. и срок службы.

    Предостережение: ВСЕ свинцово-кислотные батареи могут выделять водород и кислородные газы! Никогда не заряжайте свинцово-кислотные аккумуляторы в закрытых помещениях или контейнер. Всегда заряжайте свинцово-кислотные аккумуляторы при достаточной вентиляции. и не подключайте и не размыкайте соединения на аккумуляторе, чтобы избежать электрического разряд (искры, дуги или короткие замыкания). Подключить зарядное устройство к аккумулятору системы перед включением или подключением зарядного устройства. Еще одно предостережение для разряженные свинцово-кислотные аккумуляторы: помните, что электролит в этот момент состоит в основном из воды и замерзает при более высокой температуре (от 15 до 20 градусов). F.), чем полностью заряженный аккумулятор.

    Свинцово-кислотные аккумуляторы могут страдать от состояния, называемого сульфатацией.Вести сульфат обычно вырабатывается при разрядке батареи и повторно преобразуется по мере перезарядки (Помните Battery Chemistry 101?). Если аккумулятор остался длительное время в разряженном или частично заряженном состоянии или никогда полностью перезаряженный, сульфат свинца может затвердевать и сопротивляться обратному преобразованию диоксид свинца и губчатый свинец. Это приводит к потере емкости, которая может быть, а может и не быть обратимым. Убедитесь, что аккумулятор полностью заряжен на большинстве циклов.

    Герметичные свинцово-кислотные аккумуляторы, как правило, не выдерживают многократного глубокого разряда. разряды.Аккумулятор на 12 В не должен разряжаться ниже 10,5 В. до 10,7 В (1,75 В на элемент X 6 элементов). Если аккумулятор полностью разряжены, все реактивные материалы преобразуются, и это может очень трудно обратить вспять химическую реакцию. Некоторые батареи предназначены с дисбалансом размеров пластин и/или катализатором для контроля образования газа и помощь в подзарядке глубокого цикла.

    Закороченные ячейки вызваны физическим контактом между пластинами, обычно вызванный выходом из строя сепаратора, тепловой деформацией или вибрацией и ударами. Открыть ячейки могут быть вызваны потерей электролита, вибрацией или ударным повреждением что вызывает разрыв соединителя ячейки. Эти проблемы редко поддаются ремонту.

    Как и в случае с никель-кадмиевыми батареями, полное использование емкости батареи и полная зарядка — лучший способ сохранить полные запасы энергии. если ты подозреваю, что емкость аккумулятора уменьшилась, заряд/разряд/заряд должен быть выполнен цикл с текущим мониторингом. Этот тест лучше всего выполнять техником по ремонту с использованием оборудования, которое профилирует аккумулятор при зарядке и разрядка.Испытательное оборудование может показать точное количество заряда и ток разряда. При подключении к компьютеру строится график кривые заряда и разряда с зависимостью тока и напряжения от времени. Результат сравнивается с профилем для новой батареи и позволяет принять решение о замене батареи.

    В этих двух колонках мы познакомили вас с основными аккумуляторами. Знания, которые мы представили, являются лишь небольшой частью информации. доступен и, как и все предметы, дается интерпретации и личному опыт.

    Если у вас есть вопросы или вы хотите обсудить эту тему далее свяжитесь с нами по технической стороне 1562 Linda Way, Sparks, NV 89431, по факсу (702) 359 6693 или по электронной почте [email protected] Посетите наш веб-сайт по адресу http://www.ingenuityinc.com © 1996 Ingenuity Inc.


    Спасибо за визит INGENUITY INC.




    © Copyright 1997 Ingenuity Inc.

    17.5 Батареи и топливные элементы – Химия

    Цели обучения

    К концу этого раздела вы сможете:

    • Классифицировать батареи как первичные или вторичные
    • Перечислите некоторые характеристики и ограничения батарей
    • Дайте общее описание топливного элемента

    Батарея представляет собой гальванический элемент или ряд элементов, которые производят электрический ток. В принципе, любой гальванический элемент можно использовать в качестве батареи. Идеальная батарея никогда не разряжается, обеспечивает неизменное напряжение и способна выдерживать экстремальные температуры и влажность окружающей среды. Реальные батареи обеспечивают баланс между идеальными характеристиками и практическими ограничениями. Например, масса автомобильного аккумулятора составляет около 18 кг или около 1% от массы среднего легкового автомобиля или малотоннажного грузовика. Батарея такого типа будет давать почти неограниченную энергию при использовании в смартфоне, но будет отклонена для этого приложения из-за ее массы.Таким образом, ни одна батарея не является «лучшей», и батареи выбираются для конкретного применения с учетом таких факторов, как масса батареи, ее стоимость, надежность и емкость по току. Существует два основных типа аккумуляторов: первичные и вторичные. Ниже описаны несколько батарей каждого типа.



    Посетите этот сайт, чтобы узнать больше о батареях.

    Первичные батареи являются одноразовыми батареями, поскольку их нельзя перезаряжать. Обычной основной батареей является сухой элемент (рис. 1).{-}[/latex] с общим потенциалом элемента, который изначально составляет около 1,5 В, но снижается по мере использования батареи. Важно помнить, что напряжение, выдаваемое батареей, одинаково независимо от размера батареи. По этой причине батареи D, C, A, AA и AAA имеют одинаковое номинальное напряжение. Однако большие батареи могут доставлять больше молей электронов. Поскольку цинковый контейнер окисляется, его содержимое в конечном итоге вытекает, поэтому аккумуляторы этого типа не следует оставлять в электрических устройствах на длительное время.

    Рисунок 1. На схеме показано поперечное сечение батарейки для фонарика, сухого цинк-угольного элемента.

    Посетите этот сайт, чтобы узнать больше о угольно-цинковых батареях.

    Щелочные батареи (рис. 2) были разработаны в 1950-х годах частично для решения некоторых проблем с производительностью угольно-цинковых сухих элементов. Они производятся для точной замены угольно-цинковых сухих элементов. Как следует из названия, в этих типах батарей используются щелочные электролиты, часто гидроксид калия.{\circ} = +1,43\;\text{V} \end{массив}[/latex]

    Щелочная батарея может вырабатывать примерно в три-пять раз больше энергии, чем углеродно-цинковая сухая батарея аналогичного размера. Щелочные батареи склонны к утечке гидроксида калия, поэтому их также следует удалять из устройств для длительного хранения. Хотя некоторые щелочные батареи перезаряжаемы, большинство из них перезаряжаемы. Попытки перезарядить щелочную батарею, которая не подлежит перезарядке, часто приводят к разрыву батареи и утечке электролита гидроксида калия.

    Рисунок 2. Щелочные батареи были разработаны как непосредственная замена угольно-цинковым батареям (сухие элементы).

    Посетите этот сайт, чтобы узнать больше о щелочных батареях.

    Вторичные батареи перезаряжаемые. Это типы батарей, которые можно найти в таких устройствах, как смартфоны, электронные планшеты и автомобили.

    Никель-кадмиевые батареи или NiCd (рис. 3) состоят из никелированного катода, кадмиевого анода и электрода из гидроксида калия.{-}(водн.) \\[0.5em] \hline \\[-0.25em] \text{общий:} & \text{Cd}(s)\;+\;\text{NiO}_2(s) \;+\;2\text{H}_2\text{O}(l) & \text{Cd(OH)}_2(s)\;+\;\text{Ni(OH)}_2(s) \end{массив}[/латекс]

    Напряжение составляет от 1,2 В до 1,25 В при разрядке аккумулятора. При правильном обращении никель-кадмиевую батарею можно перезарядить около 1000 раз. Кадмий является токсичным тяжелым металлом, поэтому никель-кадмиевые аккумуляторы нельзя открывать или выбрасывать в обычный мусор.

    Рисунок 3. Никель-кадмиевые батареи имеют конструкцию «свернутого желе», которая значительно увеличивает ток, который может отдавать батарея, по сравнению с щелочными батареями аналогичного размера. {-}\;+\;x\;\text{C}_6 & x\;\text{LiC}_6 \\[0.5em] \hline \\[-0.25em] \text{общий:} & \ text{LiCoO}_2\;+\;x\;\text{C}_6 & \text{Li}_{x\;-\;1}\text{CoO}_2\;+\;x\;\ текст{LiC}_6 \end{массив}[/latex]

    С коэффициентами, представляющими моли, x составляет не более 0,5 молей. Напряжение батареи составляет около 3,7 В. Литиевые батареи популярны, потому что они могут обеспечивать большой ток, они легче, чем сопоставимые батареи других типов, создают почти постоянное напряжение при разрядке и лишь медленно теряют заряд при хранении.

    Рисунок 4. В ионно-литиевой батарее заряд протекает между электродами по мере того, как ионы лития перемещаются между анодом и катодом.

    Посетите этот сайт для получения дополнительной информации о ионно-литиевых батареях.

    Свинцово-кислотная батарея (рис. 5) — это тип аккумуляторной батареи, используемой в вашем автомобиле. Он недорог и способен производить высокий ток, необходимый для автомобильных стартеров. {- } \\[0.{-} & \text{PbSO}_4(s)\;+\;2\text{H}_2\text{O}(l) \\[0,5em] \hline \\[-0,25em] \text {всего:} & \text{Pb}(s)\;+\;\text{PbO}_2(s)\;+\;2\text{H}_2\text{SO}_4(aq) & 2 \text{PbSO}_4(s)\;+\;2\text{H}_2\text{O}(l) \end{массив}[/latex]

    Каждая ячейка производит 2 В, поэтому шесть ячеек соединены последовательно, чтобы получить автомобильный аккумулятор на 12 В. Свинцово-кислотные батареи тяжелые и содержат едкий жидкий электролит, но часто по-прежнему являются предпочтительными батареями из-за их высокой плотности тока. Поскольку эти батареи содержат значительное количество свинца, их всегда необходимо утилизировать надлежащим образом.

    Рисунок 5. Свинцово-кислотный аккумулятор в вашем автомобиле состоит из шести элементов, соединенных последовательно и обеспечивающих напряжение 12 В. Низкая стоимость и высокий выходной ток делают эти аккумуляторы отличными кандидатами для питания автомобильных стартеров.

    Посетите этот сайт для получения дополнительной информации о свинцово-кислотных батареях. {-} \\[0.{2-} \\[0.5em] \hline \\[-0.25em] \text{всего:} & 2\text{H}_2\;+\;\text{O}_2 & 2\text{H }_2\text{O} \end{массив}[/latex]

    Напряжение составляет около 0,9 В. КПД топливных элементов обычно составляет от 40% до 60%, что выше, чем у типичного двигателя внутреннего сгорания (от 25% до 35%), и, в случае водородного топливного элемента, дает только вода в качестве выхлопа. В настоящее время топливные элементы довольно дороги и имеют особенности, которые приводят к их выходу из строя через относительно короткое время.



    Перейдите по этой ссылке, чтобы узнать больше о топливных элементах.

    Батареи — это гальванические элементы или набор элементов, которые производят электрический ток. Когда элементы объединены в батареи, потенциал батареи является целым числом, кратным потенциалу отдельной ячейки. Существует два основных типа аккумуляторов: первичные и вторичные. Первичные батареи являются «одноразовыми» и не подлежат перезарядке. Сухие элементы и (большинство) щелочных батарей являются примерами первичных батарей. Второй тип является перезаряжаемым и называется вторичной батареей. Примеры вторичных батарей включают никель-кадмиевые (NiCd), свинцово-кислотные и ионно-литиевые батареи.Топливные элементы аналогичны батареям в том, что они генерируют электрический ток, но требуют постоянного добавления топлива и окислителя. Водородный топливный элемент использует водород и кислород из воздуха для производства воды и, как правило, более эффективен, чем двигатели внутреннего сгорания.

    Химия Упражнения в конце главы

    1. Каковы желательные качества электрической батареи?
    2. Перечислите некоторые факторы, которые обычно учитываются при выборе батареи для нового приложения.
    3. Рассмотрим батарею, состоящую из одного полуэлемента, состоящего из медного электрода в растворе 1 M CuSO 4 , и другого полуэлемента, состоящего из свинцового электрода в 1 M Pb(NO 3 ) 2 решение.

      а) Каковы реакции на аноде, катоде и общая реакция?

      (б) Каков стандартный потенциал ячейки для батареи?

      (c) Большинство устройств, предназначенных для использования сухих батарей, могут работать в диапазоне от 1. {\circ} = -0.{\circ} = +0,53\;\text{V} \end{массив}[/latex]

      Подойдет ли этот аккумулятор для смартфонов? Почему или почему нет?

    4. Почему аккумуляторы разряжаются, а топливные элементы нет?
    5. Объясните, что происходит с напряжением батареи при ее использовании, с помощью уравнения Нернста.
    6. Используя информацию из этой главы, объясните, почему электроника с батарейным питанием плохо работает при низких температурах.

    Глоссарий

    щелочная батарея
    первичная батарея
    , в которой используется щелочной (часто гидроксид калия) электролит; разработан, чтобы быть точной заменой сухого элемента, но с большим накоплением энергии и меньшей утечкой электролита, чем типичный сухой элемент
    аккумулятор
    гальванический элемент или ряд элементов, вырабатывающих ток; по идее любой гальванический элемент
    сухая камера
    первичная батарея
    , также называемая угольно-цинковой батареей; может использоваться в любой ориентации, поскольку в качестве электролита используется паста; имеет тенденцию вытекать электролит при хранении
    топливный элемент
    устройства, производящие электрический ток при непрерывном добавлении горючего и окислителя; эффективнее двигателей внутреннего сгорания
    свинцово-кислотная батарея
    аккумуляторная батарея
    , состоящая из нескольких элементов; свинцово-кислотная батарея, используемая в автомобилях, имеет шесть элементов и напряжение 12 В
    .
    литий-ионный аккумулятор
    очень популярная вторичная батарея; использует ионы лития для проведения тока, легкий, перезаряжаемый и создает почти постоянный потенциал при разрядке
    никель-кадмиевая батарея
    (никель-кадмиевая батарея) вторичная батарея, в которой используется кадмий, являющийся токсичным тяжелым металлом; тяжелее литий-ионных аккумуляторов, но с аналогичными ТТХ
    основная батарея
    одноразовая неперезаряжаемая батарея
    аккумуляторная батарея
    Аккумулятор
    , который можно перезаряжать

    Решения

    Ответы на упражнения по химии в конце главы

    2.Соображения включают в себя: стоимость материалов, используемых в батарее, токсичность различных компонентов (что представляет собой правильная утилизация), должна ли это быть первичная или вторичная батарея, требования к энергии («размер» батареи / как долго она должна работать) , будет ли течь конкретный аккумулятор при использовании нового устройства в соответствии с указаниями, и его масса (общая масса нового устройства). {\circ} = 0.{\circ} = 0,7996\;\text{V} \end{массив}[/latex]; (б) 3,5 × 10 15 ; (в) 5.6 × 10 −9 М

    6. Батареи являются автономными и имеют ограниченный запас реагентов, которые необходимо израсходовать, прежде чем они разрядятся. В качестве альтернативы побочные продукты реакции батареи накапливаются и мешают реакции. Поскольку топливный элемент постоянно пополняется реагентами, а продукты выбрасываются, он может продолжать функционировать до тех пор, пока подаются реагенты.

    8. E ячейка , как описано в уравнении Нернста, имеет член, который прямо пропорционален температуре.При низких температурах этот срок уменьшается, что приводит к более низкому напряжению ячейки, подаваемому батареей к устройству, — тот же эффект, что и при разряженной батарее.

    Инженеры создали высокоэффективную полностью твердотельную батарею с анодом из чистого кремния — ScienceDaily

    Инженеры создали новый тип батареи, объединяющий два перспективных направления в одной батарее. В батарее используется как твердотельный электролит, так и полностью кремниевый анод, что делает ее полностью кремниевой твердотельной батареей.Первые этапы испытаний показали, что новая батарея безопасна, долговечна и энергоемка. Он обещает широкий спектр применений от энергосистемы до электромобилей.

    Технология аккумуляторов описана в выпуске журнала Science от 24 сентября 2021 г. Наноинженеры Калифорнийского университета в Сан-Диего возглавили исследование в сотрудничестве с исследователями из LG Energy Solution.

    Кремниевые аноды

    известны своей плотностью энергии, которая в 10 раз выше, чем у графитовых анодов, наиболее часто используемых в современных коммерческих литий-ионных батареях.С другой стороны, кремниевые аноды печально известны тем, как они расширяются и сжимаются при зарядке и разрядке аккумулятора, а также тем, как они разлагаются в жидких электролитах. Эти проблемы не позволили использовать полностью кремниевые аноды в коммерческих литий-ионных батареях, несмотря на заманчивую плотность энергии. Новая работа, опубликованная в Science , предлагает многообещающий путь вперед для полностью кремниевых анодов благодаря правильному электролиту.

    «С этой конфигурацией батареи мы открываем новую территорию для твердотельных батарей, использующих аноды из сплава, такого как кремний», — сказал Даррен Х.С. Тан, ведущий автор статьи. Недавно он защитил докторскую диссертацию по химическому машиностроению в Инженерной школе Джейкобса Калифорнийского университета в Сан-Диего и стал соучредителем стартапа UNIGRID Battery, который лицензировал эту технологию.

    В твердотельных батареях нового поколения с высокой плотностью энергии всегда использовался металлический литий в качестве анода. Но это накладывает ограничения на скорость заряда батареи и необходимость повышенной температуры (обычно 60 градусов Цельсия или выше) во время зарядки. Кремниевый анод преодолевает эти ограничения, обеспечивая гораздо более высокую скорость заряда при температуре от комнатной до низких, сохраняя при этом высокую плотность энергии.

    Команда продемонстрировала полный элемент лабораторного масштаба, который обеспечивает 500 циклов зарядки и разрядки с сохранением емкости на 80% при комнатной температуре, что представляет собой впечатляющий прогресс как для производителей кремниевых анодов, так и для твердотельных аккумуляторов.

    Кремний в качестве анода вместо графита

    Кремниевые аноды, конечно, не новы. На протяжении десятилетий ученые и производители аккумуляторов рассматривали кремний как энергоемкий материал, который можно смешать с обычными графитовыми анодами в литий-ионных аккумуляторах или полностью заменить их.Теоретически кремний предлагает примерно в 10 раз большую емкость хранения, чем графит. Однако на практике литий-ионные батареи с кремнием, добавленным к аноду для увеличения плотности энергии, обычно страдают от реальных проблем с производительностью: в частности, количество раз, когда аккумулятор можно заряжать и разряжать при сохранении производительности, недостаточно велико.

    Большая часть проблемы вызвана взаимодействием между кремниевыми анодами и жидкими электролитами, с которыми они были соединены.Ситуация осложняется большим объемным расширением частиц кремния при заряде и разряде. Это приводит к серьезным потерям мощности с течением времени.

    «Как исследователям аккумуляторов жизненно важно решить основные проблемы в системе. Для кремниевых анодов мы знаем, что одной из больших проблем является нестабильность интерфейса жидкого электролита», — сказала профессор наноинженерии Калифорнийского университета в Сан-Диего Ширли Мэн, соответствующий автор на документ Science и директор Института исследования и дизайна материалов Калифорнийского университета в Сан-Диего.«Нам нужен был совершенно другой подход, — сказал Мэн.

    Действительно, группа под руководством Калифорнийского университета в Сан-Диего применила другой подход: они отказались от углерода и связующих, которые поставлялись с полностью кремниевыми анодами. Кроме того, исследователи использовали микрокремний, который меньше обрабатывается и дешевле, чем нанокремний, который используется чаще.

    Полностью твердотельный раствор

    В дополнение к удалению всего углерода и связующих веществ с анода команда также удалила жидкий электролит.Вместо этого они использовали твердый электролит на основе сульфидов. Их эксперименты показали, что этот твердый электролит чрезвычайно стабилен в батареях с полностью кремниевыми анодами.

    «Эта новая работа предлагает многообещающее решение проблемы кремниевых анодов, хотя предстоит еще много работы, — сказал профессор Мэн. — Я рассматриваю этот проект как подтверждение нашего подхода к исследованиям аккумуляторов здесь, в Калифорнийском университете в Сан-Диего. строжайшая теоретическая и экспериментальная работа с творческим подходом и нестандартным мышлением.Мы также знаем, как взаимодействовать с отраслевыми партнерами, решая сложные фундаментальные задачи».

    Прошлые усилия по коммерциализации анодов из кремниевых сплавов в основном были сосредоточены на кремний-графитовых композитах или на сочетании наноструктурированных частиц с полимерными связующими. Но они все еще борются с плохой стабильностью.

    Заменив жидкий электролит твердым электролитом и одновременно удалив углерод и связующие вещества с кремниевого анода, исследователи избежали ряда связанных проблем, возникающих, когда аноды пропитываются органическим жидким электролитом во время работы батареи. .

    В то же время, устранив углерод в аноде, команда значительно уменьшила межфазный контакт (и нежелательные побочные реакции) с твердым электролитом, избегая постоянной потери емкости, которая обычно происходит с жидкими электролитами.

    Этот шаг, состоящий из двух частей, позволил исследователям в полной мере воспользоваться преимуществами низкой стоимости, высокой энергии и экологически безопасных свойств кремния.

    Воздействие и побочная коммерциализация

    «Твердотельный кремниевый подход преодолевает многие ограничения в обычных батареях.Это открывает для нас захватывающие возможности для удовлетворения рыночных потребностей в более высоких объемах энергии, сниженных затратах и ​​более безопасных батареях, особенно для хранения энергии в сети», — сказал Даррен Х. С. Тан, первый автор статьи Science .

    Твердые электролиты на основе сульфидов часто считались очень нестабильными. Однако это было основано на традиционных термодинамических интерпретациях, используемых в системах с жидким электролитом, которые не учитывали превосходную кинетическую стабильность твердых электролитов.Команда увидела возможность использовать это нелогичное свойство для создания высокостабильного анода.

    Тан — генеральный директор и соучредитель стартапа UNIGRID Battery, который лицензировал технологию для этих кремниевых полностью твердотельных батарей.

    Параллельно в Калифорнийском университете в Сан-Диего будет продолжена соответствующая фундаментальная работа, в том числе дополнительные исследования в сотрудничестве с LG Energy Solution.

    «Компания LG Energy Solution рада, что последние исследования в области аккумуляторных технологий, проведенные совместно с Калифорнийским университетом в Сан-Диего, были опубликованы в журнале Science , что является значительным признанием», — сказал Мьюнг-Хван Ким, президент и главный специалист по закупкам LG Energy Solution. «С последним открытием LG Energy Solution намного ближе к реализации полностью твердотельных аккумуляторных технологий, которые значительно разнообразят нашу линейку аккумуляторов».

    «Являясь ведущим производителем аккумуляторов, LGES продолжит свои усилия по развитию передовых технологий в ведущих исследованиях аккумуляторных элементов следующего поколения», — добавил Ким. LG Energy Solution заявила, что планирует и дальше расширять сотрудничество в области исследований твердотельных аккумуляторов с Калифорнийским университетом в Сан-Диего.

    Исследование проводилось при поддержке открытой инновационной программы LG Energy Solution, которая активно поддерживает исследования, связанные с батареями.LGES работает с исследователями по всему миру, чтобы развивать соответствующие методы.

    Стартап

    предлагает новый электролит для свинцово-кислотных аккумуляторов

    Стартап из Мичигана хочет вдохнуть жизнь в почтенный свинцово-кислотный аккумулятор, предложив менее токсичную замену сернокислотному электролиту, который был основным продуктом на протяжении более века.

    Новый электролит Tydrolyte предназначен для самых разных применений: от автомобильных аккумуляторов с функцией «стоп-старт» до вилочных погрузчиков и тележек для гольфа. «Основное отличие состоит в том, что батареи с серной кислотой имеют тенденцию довольно быстро разлагаться», — сказал Пол Бундшу, генеральный директор Tydrolyte, Design News на недавней выставке Battery Show . «Принимая во внимание, что батареи из нашего материала, как правило, разлагаются гораздо медленнее».

    Сообщается также, что новый химический состав электролита имеет более низкое сопротивление заряду, что позволяет заряжать его быстрее.И он менее реактивен с растениями и животными. На стенде компании на выставке Бундшух продемонстрировал низкую токсичность жидкости, плеснув ее себе на лицо и положив на язык. По словам Бундшу, эта низкая токсичность послужит преимуществом в плане безопасности на производственных предприятиях, где производятся свинцово-кислотные батареи.

    На The Battery Show представители Tydrolyte продемонстрировали новый электролит с pH, близким к серной кислоте (приблизительно 1. 0). Исполнительный директор компании также плеснул жидкостью на лицо, чтобы показать ее низкую токсичность. (Источник изображения: Design News)  

    Tydrolyte на данном этапе отказался подробно описывать химический состав нового материала, заявив лишь, что он является новым и что ожидается получение патента. Компания заявила только, что материал имеет pH, аналогичный pH серной кислоты (от 0 до 1), и использует сульфаты для взаимодействия со свинцовыми пластинами и пластинами из диоксида свинца таким же образом, как и в обычных свинцово-кислотных батареях.

    Если поставщики примут новую технологию стартапа, это станет серьезным шагом вперед в аккумуляторной отрасли. Свинцово-кислотные батареи, изобретенные в 1859 году, большую часть своей истории использовали серную кислоту в качестве электролита.

    Безусловно, реакция промышленности на новую химию неизвестна. Но руководители Tydrolyte настроены оптимистично. Независимые инженеры-испытатели из Electric Applications, Inc. показали, что батареи, использующие новый электролит, имеют такую ​​же емкость и значения силы тока при холодном пуске, как и батареи, использующие серную кислоту с аналогичным удельным весом.Испытания также показали меньшие потери воды, лучшее восприятие импульсного заряда, более высокую эффективность зарядки и более длительный срок службы при высоких рабочих температурах. По словам Бундшу, фактор срока службы может означать более длительный срок службы, календарный срок службы или срок годности.

    В случае успеха новая технология может предложить инновацию для очень большого рынка. Хотя использование свинцово-кислотных аккумуляторов в значительной степени считается само собой разумеющимся, это по-прежнему рынок объемом 36 миллиардов долларов, на долю которого приходится около 80% отрасли в пересчете на мощность.

    «У свинцово-кислотной батареи осталось много времени», — сказал Бундшу. «Об этом мало говорят в СМИ, потому что это зрело. Но он по-прежнему является доминирующим игроком, и остается много места для инноваций».

    Старший технический редактор Чак Мюррей пишет о технологиях уже 34 года. Он присоединился к Design News в 1987 году и занимался электроникой, автоматизацией, гидроэнергетикой и автомобилями.

    Сегодняшние идеи.Технологии завтрашнего дня.
    ESC возвращается в Миннеаполис, 31 октября — ноябрь. 1, 2018, со свежей углубленной двухдневной образовательной программой , разработанной специально для нужд современных профессионалов в области встраиваемых систем. Благодаря четырем всеобъемлющим курсам, новым техническим учебным пособиям и множеству лучших инженеров на сцене вы получите специализированное обучение, необходимое для создания конкурентоспособных встраиваемых продуктов. Попрактикуйтесь в классе и поговорите напрямую с инженерами и разработчиками, которые помогут вам работать быстрее, дешевле и эффективнее. Нажмите здесь, чтобы зарегистрироваться сегодня!

    Многоразовая технология может обеспечить достаточно энергии, чтобы проехать на электромобиле до 3000 миль

    Технология, использующая безмембранную проточную батарею, демонстрирует успех в питании тележек для гольфа и других приложений.

    WEST LAFAYETTE, Ind. — Новый тип электромобиля, использующий «перезаправляемую» технологию, сделал еще один гигантский скачок в развитии альтернативной энергетики. Испытания показали, что он может обеспечить достаточно энергии, чтобы проехать на автомобиле около 3000 миль.

    В этой технологии используется новый тип «проточной» батареи, которая успешно проходит испытания на тележках для гольфа. Впервые она была продемонстрирована в 2017 году. Нажмите здесь, чтобы посмотреть видео о технологии.

    «Скачок, который эта технология совершила за последние два года, является свидетельством ее ценности в изменении того, как мы приводим в действие наши транспортные средства», — сказал Джон Кушман,   Университета Пердью, выдающийся профессор земных, атмосферных и планетарных наук и профессор математики. «Это меняет правила игры для электромобилей следующего поколения, потому что не требует очень дорогостоящей перестройки электросети по всей территории США. Вместо этого можно было бы переоборудовать заправочные станции для перекачки свежего электролита и утилизации израсходованного электролита, а также преобразовать установки по замене масла в станции по замене анодов. Она проще и безопаснее в использовании и более экологична, чем существующие аккумуляторные системы».

    Эрик Науман, профессор машиностроения, биомедицинской инженерии и фундаментальных медицинских наук и соучредитель IFBattery, и Майкл Дзикан, старший инженер IFBattery, проводят испытания безмембранной проточной батареи, используемой для питания тележки для гольфа.Аккумулятор может генерировать достаточно энергии, чтобы проехать на электромобиле до 3000 миль. (Лина Лэндис, Исследовательский фонд Purdue) Скачать изображение

    В этой технологии используется запатентованная технология, безопасная и доступная для подзарядки аккумуляторов электрических и гибридных автомобилей путем замены жидкости в аккумуляторах примерно каждые 300 миль посредством процесса, аналогичного заправке автомобиля на заправочной станции. Каждые 3000 миль материал анода заменяется, что занимает меньше времени, чем требуется для замены масла, и стоит примерно столько же, а ориентировочная стоимость составляет около 65 долларов.

    Кушман и Эрик Науман, профессор машиностроения, биомедицинской инженерии и фундаментальных медицинских наук, стали соучредителями IFBattery Inc. для коммерциализации технологии.

    «Батарея выполняет две функции: производит электричество и производит водород. Это важно, потому что большинство автомобилей с водородным двигателем работают с баком на 5000 или 10 000 фунтов на квадратный дюйм [фунтов на квадратный дюйм], что может быть опасно», — сказал Майкл Дзикан, старший инженер IFBattery. «Эта система вырабатывает водород по мере необходимости, поэтому вы можете безопасно хранить водород при давлении 20 или 30 фунтов на квадратный дюйм вместо 10 000.

    Технология проточного аккумулятора сначала была испытана на скутерах, а затем на более крупных внедорожниках. По словам Кушмана, следующим шагом будет промышленное оборудование, а затем и автомобили.

    «Исторически проточные батареи не были конкурентоспособными из-за низкой плотности энергии, — сказал Кушман. «Например, обычные проточные батареи имеют плотность энергии около 20 ватт-часов на килограмм. Литий-ионный аккумулятор работает на 250 ватт-часов на килограмм. Наша проточная батарея может работать в три-пять раз больше.

    Кушман представит технологию на 11-й ежегодной встрече InterPore в Валенсии, Испания, в мае 2019 года, а ранее он представил ее на 9-й Международной конференции Международного общества пористых материалов в Роттердаме, Нидерланды, и на 10-й Международной конференции в Новом Орлеане.

    «Обычные электромобили, такие как Tesla, имеют литий-ионные батареи, которые обычно подключаются к сети на ночь. В нашей проточной батарее используется единая жидкость на водной основе, которая может управлять автомобилем, как будто это газовый двигатель, за исключением того, что он ничего не сжигает — это как гибрид батареи и газа», — сказал Науман.

    Без использования мембраны или сепаратора одножидкостная технология окисляет анод для производства электронов, а за счет восстановления на катоде генерирует ток энергии для питания транспортных средств. Окислитель представляет собой макромолекулу, которая находится в электролите, но восстанавливается только на катоде.

    «Сейчас мы находимся в той точке, когда можем генерировать много энергии. От такой батареи может получиться больше энергии, чем вы могли себе представить», — сказал Кушман.

    Отработанные аккумуляторные жидкости или электролиты можно собрать и доставить на солнечную электростанцию, ветряную турбину или гидроэлектростанцию ​​для подзарядки.

    «Это полный цикл энергии с очень небольшими потерями», — сказал Кушман. «Компоненты IFBattery достаточно безопасны для хранения в семейном доме, достаточно стабильны, чтобы соответствовать основным требованиям производства и распространения, и являются экономически эффективными».

    IFBattery лицензировала часть технологии через Управление коммерциализации технологий Purdue Research Foundation и разработала собственные патенты.

    Технология совпадает с празднованием Purdue Giant Leaps, посвященным глобальным достижениям университета в области здравоохранения, космоса, искусственного интеллекта и устойчивого развития в рамках празднования 150-летия Purdue.

    Author:

    Добавить комментарий

    Ваш адрес email не будет опубликован.