Как подобрать драйвер для светодиодов в авто: виды, характеристики и критерии выбора устройств

Содержание

Питание светодиодов, блок питания для светодиодов

Постоянные читатели часто интересуются, как правильно сделать питание для светодиодов, чтобы срок службы был максимален. Особенно это актуально для led  неизвестного производства с плохими техническими характеристиками или завышенными.

По внешнему виду и параметрам  невозможно определить качество. Частенько приходится рассказывать как рассчитать блок питания для светодиодов, какой лучше купить или сделать своими руками. В основном рекомендую купить готовый, любая схема после сборки требует проверки и настройки.

Содержание

  • 1. Основные типы
  • 2. Как сделать расчёт
  • 3. Калькулятор для расчёта
  • 4. Подключение в автомобиле
  • 5. Напряжения питания светодиодов
  • 6. Подключение от 12В
  • 7. Подключение от 1,5В
  • 8. Как рассчитать драйвер
  • 9. Низковольтное от 9В до 50В
  • 10. Встроенный драйвер, хит 2016
  • 11.
    Характеристики

Основные типы

Светодиод – это полупроводниковый электронный элемент, с низким внутренним сопротивлением. Если подать на него стабилизированное напряжение, например 3V, через него пойдёт большой ток, например 4 Ампера, вместо требуемого 1А. Мощность на нём составит 12W, у него сгорят тонкие проводники, которыми подключен кристалл. Проводники отлично видно на цветных и RGB диодах, потому что на них нет жёлтого люминофора.

Если блок питания для светодиодов  12V со стабилизированным напряжением, то для ограничения тока последовательно устанавливают резистор. Недостатком такого подключения будет более высокое потребление энергии, резистор тоже потребляет некоторую энергию. Для светодиодных аккумуляторных фонарей на 1,5В применять такую схему нерационально. Количество вольт на батарейке быстро снижается, соответственно будет падать яркость.  И без повышения минимум до 3В диод не заработает.

Этих недостатков  лишены специализированные светодиодные драйвера на ШИМ контроллерах. При изменениях напряжения  ток остаётся постоянным.

Как сделать расчёт

Чтобы рассчитать блок питания для светодиодов необходимо учитывать 2 основных параметра:

  1. номинальная потребляемая мощность или желаемая;
  2. напряжение падения.

Суммарное энергопотреблением подключаемой электрической цепи не должно превышать  мощности блока.

Падения напряжения зависит от того, какой свет излучает лед чип. Я рекомендую покупать фирменные LED, типа Bridgelux, разброс параметров у них минимальный. Они гарантированно держат заявленные характеристики и имеют запас по ним. Если покупаете на китайском базаре, типа Aliexpress, то не надейтесь на чудо, в 90% вас обманут и пришлют барахло с параметрами в 2-5 раз хуже. Это многократно проверяли мои коллеги, которые заказывали недорогие LED 5730 иногда по 10 раз. Получали они SMD5730 на 0,1W, вместо 0,5W. Это определяли по вольтамперной-характеристике.

Пример различной яркости кристаллов

К тому же у дешевых разброс параметров очень большой. Что бы  это определить в домашних условиях своими руками, подключите их последовательно 5-10 штук. Регулирую количество вольт, добейтесь чтобы они слегка светились. Вы увидите, что часть светит ярче, часть едва заметно. Поэтому некоторые в номинальном рабочем режиме будут греться сильнее, другие меньше. Мощность будет на них разная, поэтому самые нагруженные выйдут из строя раньше остальных.

Калькулятор для расчёта

Для удобства читателей опубликовал онлайн калькулятор для расчёта резистора для светодиодов при подключении к стабильному напряжению.

Калькулятор учитывает 4 параметра:

  • количество вольт на выходе;
  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи.

Подключение в автомобиле

..

При заведенном двигателе бывает в среднем 13,5В — 14,5В, при заглушенном12В — 12,5В. Особые требования при включении в автомобильный прикуриватель или бортовую сеть. Кратковременные скачки могут быть до 30В. Если у вас используется токоограничивающее сопротивление, то сила тока возрастает прямо пропорционально повышению напряжению питания светодиодов. По этой причине лучше ставить стабилизатор на микросхеме.

Недостатком использования светодиодных драйверов в авто может быть появление помех на радио в УКВ диапазоне. ШИМ контроллер работает на высоких частотах и будет давать помехи на ваш радиоприёмник. Можно попробовать заменить на другой или линейный типа стабилизатор тока LM317 для светодиодов. Иногда помогает экранирование металлом и размещение подальше от головного устройства авто.

Напряжения питания светодиодов

Из таблиц видно, для маломощных на 1W, 3W этот показатель  2В для красного, желтого цвета, оранжевого. Для белого , синего, зелёного он от 3,2В до 3,4В. Для мощных от 7В до 34В. Эти циферки придется использовать для расчётов.

Таблица для LED на 1W, 3W, 5W

Таблица для мощных светодиодов 10W, 20W, 30W, 50W, 100W

Подключение от 12В

Одно из самых распространенных напряжений это 12 Вольт, они присутствуют в бытовой  технике, в автомобиле и автомобильной электронике. Используя 12V можно полноценно подключить 3 лед диода. Примером служит светодиодная лента на 12V, в которой 3 штуки и резистор подключены последовательно.

Пример на диоде 1W,  его номинальный ток 300мА.

  • Если на одном LED падает 3,2В, то для 3шт получится 9,6В;
  • на резисторе будет 12В – 9,6В = 2,4В;
  • 2,4 / 0,3 = 8 Ом номинал нужного сопротивления;
  • 2,4 * 0,3 = 0,72W будет рассеиваться на резисторе;
  • 1W + 1W + 1W + 0,72 = 3,72W полное энергопотребление всей цепи.

Аналогичным образом можно вычислить и для другого количества элементов в цепи.

Подключение от 1,5В

Источник питания для светодиодов может быть и простой пальчиковой батарейкой на 1,5В. Для LED диода требуется обычно минимум 3V, без стабилизатора тут никак не обойтись. Такие специализированные светодиодные драйвера используются в  ручных фонариках на Cree Q5 и Cree XML T6. Миниатюрная микросхема повышает количество вольт до 3V и стабилизирует  700мА. Включение от 1.5 вольт при помощи токоограничивающего сопротивления невозможно. Если применить две  батареи на  1.5 вольт, соединив их последовательно, получим 3В. Но батарейки достаточно быстро разряжаются,  а яркость будет падать еще быстрее. При 2,5В емкости в батареях останется еще много, но диод уже практически потухнет. А светодиодный драйвер будет поддерживать номинальную яркость даже при 1В.

Обычно такие модули заказываю на Aliexpress,  у китайцев  стоят 50-100руб, в России они дороговаты.

Как рассчитать драйвер

Чтобы рассчитать драйвер питания для светодиодов со стабильным током:

  1. составьте на бумаге схему подключения;
  2. если драйвер китайский, то желательно проверить выдержит он заявленную мощность или нет;
  3. учитывайте, что для разных цветов (синий, красный, зеленый) разное падение вольт;
  4. суммарная мощность не должна быть выше, чем у источника тока.

Нарисуйте схему включения, на которой распределите элементы, если они подключены не просто последовательно, а комбинировано с параллельным соединением.

На китайском блоке питания неизвестного производителя мощность может быть значительно ниже. Они запросто  указывают максимальную пиковую мощность, а не номинальную долговременную. Проверять сложнее, надо предельно нагрузить блок питания и замерить параметры.

Для третьего пункта используйте примерные таблицы для  1W,3W, 5W, 10W, 20W, 30W, 50W, 100W, которые приведены выше. Но больше доверяйте характеристикам, которые вам дал продавец. Для однокристальных бывает 3V, 6V, 12V.

Если энергопотребление цепи  в сумме  превысит номинальную мощность  источника питания, то ток просядет и увеличится нагрев. Он восстановится до нормального уровня, если снизить нагрузку.

Для светодиодных лент сделать расчёт очень просто. Измерьте количество Ватт на 1 метр и умножьте на количество метров. Именно измерьте, в большинстве случаем мощность завышена и вместо 14,4 Вт/м получите 7 Вт/м. Ко мне слишком часто обращаются с такой проблемой разочарованные покупатели.

Низковольтное от 9В до 50В

Кратко расскажу, что использую для включения для блоков на 12В, 19V, 24В и  для подключения к автомобильным 12В.

Чаще всего покупаю готовые модули на ШИМ микросхемах:

  1. бывают повышающие, например, на входе 12V, на выходе 22В;
  2. понижающие, например из 24В до 17В.

Не всем хочется тратить большую денежку на покупку готового прожектора для авто, светодиодного светильника или заказывать готовый драйвер. Поэтому обращаются ко мне, что бы из подручных комплектующих собрать что-нибудь приличное. Цена таких модулей начинается от 50руб до 300руб за модель на 5А с радиатором. Покупаю заранее по несколько штук, расходятся быстро.

Больше всех популярен вариант на линейной ИМС LM317T LM317, простой, надежный устаревший.

Очень популярны модели на LM2596, но она уже устарела и советую обратить внимание на более современное с хорошим КПД. Такие блоки имеют от 1 до 3 подстроечных сопротивлений, которыми можно настроить любые параметры до 30В и до 5А.

Встроенный драйвер, хит 2016

В начале 2016 года стали набирать популярность светодиодные модули и COB диоды с интегрированным драйвером. Они включаются сразу в сеть 220В, идеальный вариант для сборки светотехники своими руками. Все элементы находятся на одной теплопроводящей пластине. ШИМ контроллеры миниатюрные, благодаря хорошему контакту с системой охлаждения. Тестировать надежность и стабильность еще не приходилось, первые отзывы появятся минимум через полгода использования. Уже заказал самую дешевую и доступную модель COB на 50W. Чтобы найти такие на китайском базаре Алиэкспресс, укажите в поиске «integrated led driver».

Характеристики

 

Глобальная проблема, это подделка светодиодов Cree и Philips в промышленных масштабах. У китайцев для этого есть целые предприятия, внешне копируют на 95-99%, простому покупателю отличить невозможно. Самое плохое, когда такую подделку вам продают под видом оригинального Cree T6. Вы будете подключать поддельный по техническим спецификациям оригинального. Подделка имеет характеристики в среднем на 30% хуже. Меньше световой поток, ниже максимальная рабочая температура, ниже энергопотребление. Про обман вы узнаете очень не скоро, он проработает примерно в 5-10 раз меньше настоящего, особенно на двойном токе.

Недавно измерял световой поток своих фонариков на левых Cree производства  LatticeBright. Доставал всю плату с драйвером и ставил в фотометрический шар. Получилось 180-200 люмен, у оригинала 280-300лм. Без серьезного оборудования, которое преимущественно есть в лабораториях, вы не сможете измерить, соответственно узнать правду.

Иногда попадаются разогнанные диоды,  сила тока на которых на 30%-60% выше номинальной, соответственно и мощность. Недобросовестный производитель, особенно  подвально-китайский пользуется тем, что срок службы трудно измерить в часах. Ведь никто не засекает отработанное время, а когда светильник или светодиодный прожектор выйдут из строя продавца уже не найти. Да и искать бессмысленно, срок гарантии на такую продукцию дают всегда меньше периода службы.

Как выбрать светодиодный драйвер, led driver

Самым оптимальным способом подключения к 220В, 12В является использование стабилизатора тока, светодиодного драйвера. На языке предполагаемого противника пишется «led driver». Добавив к этому запросу желаемую мощность, вы легко найдёте на Aliexpress или Ebay подходящий товар.

Содержание

  • 1. Особенности китайских
  • 2. Срок службы
  • 3. ЛЕД драйвер на 220В
  • 4. RGB драйвер на 220В
  • 5. Модуль для сборки
  • 6. Драйвер для светодиодных светильников
  • 7. Блок питания для led ленты
  • 8. Led драйвер своими руками
  • 9. Низковольтные
  • 10. Регулировка яркости

Особенности китайских

Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют.   LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются  самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие  работают на пределе своих параметров, без какого либо запаса.

Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

Срок службы

Как у любого электронного устройства у светодиодного драйвера есть срок службы, который зависит от условий эксплуатации. Фирменные современные светодиоды уже работают до 50-100 тысяч часов, поэтому питание выходит из строя раньше.

Классификация:

  1. ширпотреб до 20.000ч.;
  2. среднее качество до 50.000ч.;
  3. до 70.000ч. источник питания на качественных японских комплектующих.

Этот показатель важен при расчёте окупаемости на долгосрочную перспективу. Для бытового пользования хватает ширпотреба. Хотя скупой платит дважды, и в светодиодных прожекторах и светильниках это отлично работает.

ЛЕД драйвер на 220В

Современные светодиодные драйвера конструктивно выполняются на ШИМ контроллере, который очень хорошо может стабилизировать ток.

Основные параметры:

  1. номинальная мощность;
  2. рабочий ток;
  3. количество подключаемых светодиодов;
  4. степень защиты от влаги и пыли
  5. коэффициент мощности;
  6. КПД стабилизатора.

Корпуса для уличного использования  выполняются из металла или ударопрочного пластика. При изготовлении корпуса из алюминия он может выступать в качестве системы охлаждения для электронной начинки. Особенно это актуально при заполнении корпуса компаундом.

На маркировке часто указывают, сколько светодиодов  можно подключить и какой мощности. Это значение может быть не только фиксированным, но и в виде диапазона. Например, возможно подключение светодиодов 12 220 от 4 до 7 штук по 1W. Это зависит от конструкции электрической схемы  светодиодного драйвера.

RGB драйвер на 220В

Для мощных РГБ диодов 10W, 20W, 30W, 50W, 100W

..

Трёхцветные светодиоды RGB отличаются от одноцветных тем, что содержат в одном корпусе кристаллы разных цветов красный, синий, зелёный. Для управления ими каждый цвет необходимо зажигать отдельно. У диодных лент для этого используется RGB контроллер и блок питания.

Если для RGB светодиода указана мощность 50W, то это общая на всё 3 цвета. Чтобы узнать примерную нагрузку на каждый канал, делим 50W на 3, получим около 17W.

Для РГБ на 1W, 3W, 5W, 10W

Кроме мощных led driver есть и на 1W, 3W, 5W, 10W.

Пульты дистанционного управления (ДУ) бывают 2 типов. С инфракрасным управлением, как у телевизора. С управлением по радиоканалу, ДУ не надо направлять на приёмник сигнала.

Модуль для сборки

Если вас интересует лед driver для сборки своими руками светодиодного прожектора или светильника, то можно использовать led driver без корпуса.

Если у вас уже есть стабилизатор тока для светодиодов, который не подходит по силе тока, то её можно увеличить или уменьшить. Найдите на плате микросхему ШИМ контроллера, от которого зависят характеристики  led драйвера. На ней указана маркировка, по которой необходимо найти спецификации на неё. В документации будет указана типовая схема включения.   Обычно ток на выходе задаётся одним или несколькими резисторами, подключенными к ножкам микросхемы. Если изменить номинал резисторов или поставить переменное сопротивление согласно информации из спецификаций, то можно будет изменить ток.  Только нельзя превышать начальную мощность, иначе может выйти из строя.

Драйвер для светодиодных светильников

К питанию уличной светотехники предъявляются немного другие требования. При проектировании уличного освещения учитывается, то LED driver будет работать в условиях от -40° до +40° в сухом и влажном воздухе.

Коэффициент пульсаций  для светильников может быть выше, чем при использовании внутри помещения. Для уличного освещения этот показатель становится не важным.

При эксплуатации на улице требуется полная герметичность блока питания. Существует несколько способов защиты от попадания влаги:

  1. заливка всей платы герметиком или компаундом;
  2. сборка блока с использованием силиконовых уплотнителей;
  3. размещение платы светодиодного драйвера в одном объёме со светодиодами.

Максимальный уровень защиты это IP68, обозначается как «Waterproof LED Driver» или «waterproof electronic led driver». У китайцев это не гарантия водонепроницаемости.

По моей практике заявленный уровень защиты от влаги и пыли не всегда соответствует  реальному.  В некоторых местах может не хватать уплотнителей. Обратите внимание на ввод  и вывод кабеля из корпуса, попадаются образцы с отверстием, которое не закрыто герметиком или другим способом. Вода по кабелю сможет затекать в корпус и затем в нём испаряться. Это приведет к возникновению коррозии на плате и открытых частях  проводов. Это многократно сократит срок службы прожектора или светильника.

Блок питания для led ленты

LED лента работает по другому принципу, для неё требуется стабилизированное напряжение. Токозадающий резистор установлен на самой ленте. Это облегчает процесс подключения, подсоединить можно отрезок любой длины начиная от 3см до 100м.

Поэтому питание для светодиодной ленты можно сделать из любого блока питания на 12в от бытовой электроники.

Основные параметры:

  1. количество вольт на выходе;
  2. номинальная мощность;
  3. КПД;
  4. степень защиты от влаги и пыли
  5. коэффициент мощности.

Led драйвер своими руками

Простейший драйвер своими руками можно изготовить за 30 минут, даже если вы не знаете основы электроники. В качестве источника напряжения можно использовать блок питания от бытовой электроники с напряжением от 12В до 37В. Особенно подходит блок питания от ноутбука, у которого 18 – 19В и мощность от 50W до 90W.

Потребуется минимум деталей, все они изображены на картинке. Радиатор для охлаждения мощного светодиода можно позаимствовать из компьютера. Наверняка где-нибудь дома в кладовке у вас пылятся старые запчасти от системного блока. Лучше всего подойдёт от процессора.

Ччто бы узнать номинал требуемого сопротивления, используйте калькулятор расчёта стабилизатора тока для LM317.

Прежде чем делать led driver 50W своими руками, стоит немного поискать, например есть в каждой диодной лампе. Если у вас есть неисправная лампочка, у которой неисправность в диодах, то можно использовать driver из неё.

Низковольтные

Подробно разберем виды низковольтных лед драйверов работающих от напряжения до 40 вольт. Наши китайские братья по разуму предлагают множество вариантов. На базе ШИМ контроллеров производятся стабилизаторы напряжения и стабилизаторы тока. Основное отличие, у модуля с  возможностью стабилизации тока на плате находится 2-3 синих регулятора, в виде переменных резисторов.

В качестве технических характеристик всего модуля указывают параметры ШИМ микросхемы, на которой он собран. Например устаревший но популярный LM2596 по спецификациям держит до 3 Ампер. Но без радиатора он выдержит только 1 Ампер.

Более современный вариант с улучшенным КПД это ШИМ контроллер XL4015 рассчитанный на 5А. С миниатюрной системой охлаждения может работать до 2,5А.

Если у вас очень мощные сверхяркие светодиоды, то вам нужен led драйвер для светодиодных светильников. Два радиатора охлаждают диод Шотки и микросхему XL4015. В такой конфигурации она способна работать до 5А с напряжением до 35В. Желательно чтобы он не работал в предельных режимах, это значительно повысить его надежность и срок эксплуатации.

Если у вас небольшой светильник или карманный прожектор, то вам подойдет миниатюрный стабилизатор напряжения, с  током до 1,5А. Входное напряжение от 5 до 23В, выход до 17В.

Регулировка яркости

Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно. Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.

Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.

Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.

Техподдержка

Какую светодиодную ленту лучше использовать для закарнизной подсветки?

Для подсветки ниш небольших размеров при высоте потолка до 3 м подойдет лента теплого свечения (арт. 024571) со 120 светодиодами на 1 м и мощность 9.6 Вт/м. Если вы хотите разнообразить варианты свечения, то к этой ленте можно добавить ленту RGB (арт. 010367) с 60 светодиодами на 1 м и мощностью 14.4 Вт/м. Если нет места для установки второго ряда ленты, то можно использовать ленту по технологии 4-в-1 (арт. 019151), которая заменяет сразу 2 предыдущие ленты.

При желании к ленте теплого свечения можно добавить ленту дневного белого (арт. 011581) или нейтрального белого свечения (арт. 010347). Тогда при помощи контроллера можно будет менять оттенок цвета в широком диапазоне. Или можно установить ленту MIX, в которой содержатся светодиоды теплого и нейтрального белого свечения, например, арт.

025211.

Если ниша глубокая или находится на большой высоте, то можно рекомендовать более мощные ленты, например, арт. 020393 со 120 светодиодами на 1 м и мощность 14.4 Вт/м или другие.

Также необходимо учитывать, будут ли установлены в комнате другие источники света или закарнизная светодиодная лента будет использоваться как основное освещение.

Если это декоративная подсветка, цель которой подчеркнуть особенности интерьерного оформления, достаточно использовать светодиодную ленту малой мощности, например, арт. 016144 мощностью 4.8 Вт/м и с количеством светодиодов 60 шт/м.

Если это основное освещение, рекомендуем установить более мощную ленту, например, арт. 019094 мощностью 17 Вт/м и с количеством светодиодов 168 шт/м.

Если для вас важно абсолютно точное восприятие цветов при искусственном освещении, используйте ленты с индексом цветопередачи CRI98. Вам подойдет, например, лента арт. 021410.

Советуем обязательно устанавливать ленту на алюминиевый профиль с экраном. Профиль отлично отводит тепло и продлевает срок службы ленты до 10 лет и более. А экран защищает ленту от пыли. Для сведения, всего через 1–2 года подсветка может потерять до 50% яркости всего лишь из-за слоя пыли на светодиодах. При наличии экрана его будет достаточно протереть и яркость восстановится.

Для вышеуказанных лент идеально подходит профиль MIC (арт. 012089) шириной 15.6 мм и высотой всего 6 мм. Прозрачный экран (арт. 012036) надежно защитит ленту от пыли, не снижая яркость ленты.

Если подсвечиваемая ниша находится в зоне с повышенной влажностью, например, в ванной комнате, используйте влагозащищенную ленту со степенью защиты не ниже IP65, например, ленту в силиконовой трубке (арт. 022321, IP67).

Свернуть

Правила выбора и схемы подключения драйверов для различных светодиодных модулей

12.06.2013

Что такое светодиодный драйвер? 

Светодиодным драйвером, называют устройство, предназначенное для стабилизации тока светодиодов, при включении их в бортовую сеть автомобиля. Бывают также и драйвера, подключаемые в сеть, 220 В, но речь пойдет не о них. 
Необходимость драйвера при подключении светодиодов обоснована особенностью светодиодов уменьшать свое внутреннее сопротивление при нагреве. 
Из-за этого свойства, ток на светодиоде, включенном в сеть с условно-постоянным напряжением, будет самопроизвольно возрастать, что приведет к усиленному нагреву светодиода и опять же возрастанию тока. В конечном итоге светодиод выйдет из строя из-за теплового пробоя. 
Также, в бортовой сети автомобиля присутствуют импульсы напряжения до 100 В, которые могут вывести из строя светодиод. Драйвер также обеспечивает защиту также и от подобных импульсов. 

По какому принципу работает стабилизатор тока? Стабилизатор тока работает по принципу поддержания стабильного, заданного тока не зависимо от напряжения питания и падения напряжения на нагрузке, если падение напряжения не превышает напряжение питания. 
Напряжение на выходе стабилизатора, может меняться. Оно будет зависеть от падения напряжения на нагрузке. Напряжение на выходе будет меняться так, чтобы через нагрузку протекал, заданный стабилизатором ток. При изменении падения напряжения на нагрузке (например, включении еще одного светодиода в цепь), напряжение на выходе драйвера автоматически изменится для поддержания заданного тока. 
Какие существуют стабилизаторы тока? Существуют линейные и импульсные (ШИМ) стабилизаторы тока. Сейчас мы расскажем о линейных стабилизаторах. 

Линейный стабилизатор. 

Линейным стабилизатором называется стабилизатор, работающий по принципу, ограничения тока на светодиодах, путем падения лишнего напряжения на силовых элементах схемы стабилизатора. 
Достоинством существующего ряда линейных стабилизаторов на основе микросхемы AMC 7140D являются. 

1.Шаг стабилизации тока 10 мА (в импульсных стабилизаторах шаг стабилизации больше). 
2. Возможность подключать готовые светодиодные модули с токоограничивающими резисторами (в импульсных стабилизаторах подобное делать категорически запрещено из-за нарушения работы схемы стабилизации тока).  
Существенным недостатком линейных драйверов, является повышенное тепловыделение, поэтому при включении таких драйверов на ток свыше 250 мА (а для всех кроме белых светодиодов-200) необходимо использовать дополнительные радиаторы. Без них будет срабатывать защита от перегревания и светодиодный модуль будет прерывисто мигать либо выйдет из строя. 

В существующем каталоге товаров есть следующие типы линейных стабилизаторов: 

1. exModule 2way 

2.Контроллер TPC Ver.3.ST для реверсивных светодиодов R-LED со стабилизацией 

3.Светодиодный драйвер на базе AMC7140 80 mA (стоп-габарит с управляющим плюсом) 

Примером использования типа стабилизаторов “3.Светодиодный драйвер на базе AMC7140 80 mA (стоп-габарит с управляющим плюсом)“, может служить подключение светодиодных модулей в качестве дневных ходовых огней. В таком случае на входы питания подается напряжение с системы включения ДХО, а на вход отключения (белый провод) подается плюс питания с системы основного света. Также подобный драйвер можно использовать в светодиодных сборках для задних фонарей в качестве модуля, стоп-габарит. 
Примером использования стабилизаторов типа ” 2.Контроллер TPC Ver.3.ST для реверсивных светодиодов R-LED со стабилизацией“, являются подключение светодиодного модуля с реверсивными светодиодами в качестве габарита-поворота, который бы выключал сигнал габарита, при включении сигнала поворота и включал его через некоторое время после выключения сигнала-поворота. 

Примером же светодиодного модуля типа “ 1. exModule 2way“, может служить модуль на бело-желтых светодиодах не реверсивного типа, габарит-поворот. 

Схемы подключения линейных стабилизаторов. 

Схема подключения линейного стабилизатора с безрезисторными сборками модуля типа,1.exModule 2way 

 

Схема подключения линейного стабилизатора с безрезисторными сборками модуля типа, 2. Контроллер TPC Ver.3.ST для реверсивных светодиодов R-LED со стабилизацией 

 

Схема подключения линейного стабилизатора с безрезисторными сборками модуля типа, 3.  Светодиодный драйвер на базе AMC7140 80 mA (стоп-габарит с управляющим плюсом) 

 

Схема подключения линейного стабилизатора с резисторными сборками модуля типа, 1. exModule 2way 

 

Схема подключения линейного стабилизатора с резисторными сборками модуля типа, 2. Контроллер TPC Ver.3.ST для реверсивных светодиодов R-LED со стабилизацией 

 

Схема подключения линейного стабилизатора с резисторными сборками модуля типа, 3. Светодиодный драйвер на базе AMC7140 80 mA (стоп-габарит с управляющим плюсом) 

 

Импульсные светодиодные драйверы. 

Также существуют импульсные светодиодные драйверы, называемые также, ШИМ-драйверы. Принцип работы их основан на создании тока в цепи светодиодов, путем подачи импульсов напряжения на цепочку, состоящую из конденсатора и дросселя, величина тока в цепи светодиода определяется длинной этих импульсов. Чем импульс длинней, тем величина тока больше. 
Из-за импульсного режима работы такие стабилизаторы не обладают повышенным тепловыделением. Это означает, что при работе на токах до 1 А включительно дополнительное охлаждение им не требуется. Также из-за зависимости длительности импульса от входного напряжения и автоматического его изменения при изменении его входного напряжения, есть возможность использования подобных стабилизаторов при входном напряжении до 30 В, что не возможно при использовании линейных стабилизаторов. 
Недостатки импульсных стабилизаторов: 

1. Большой диапазон между токами стабилизации (50-100 мА) 
2. Невозможность использования драйвера со сборками, в составе которых есть токоограничивающий резистор. 
ЭТО ПРИВЕДЕТ К ВЫХОДУ ИЗ СТРОЯ ДРАЙВЕРА И САМОЙ СБОРКИ!
 
3. Невозможно использовать на токах до 150 мА 

В существующем каталоге товаров есть следующие типы импульсных (ШИМ) стабилизаторов: 

1. Драйверы ШИМ с управляющим ПЛЮСОМ 
2. Драйверы ШИМ с управляющим МИНУСОМ 
3. Драйверы ШИМ с управляющим ПЛЮСОМ и контролем работы двигателя 
4. Программируемые светодиодные драйверы ШИМ 

К примеру, подключим светодиодную сборку в качестве ДХО. Включаться она будет по желанию водителя. Для этого используем драйвер под номером “1. Драйверы ШИМ с управляющим ПЛЮСОМ 

 

Если же мы захотим чтобы ДХО включались автоматически при запуске двигателя, то необходимо использовать драйвер под номером “3. Драйверы ШИМ с управляющим ПЛЮСОМ и контролем работы двигателя 

 

Если мы захотим подключить дополнительное световое оборудование, которое бы включалось и выключалось по желанию водителя, то лучше использовать драйвер под номером ” 2. Драйверы ШИМ с управляющим МИНУСОМ, т.к. минусовой провод в бортовой сети найти гораздо проще, чем плюсовой. 

 

Для подключения сборок в качестве стопа и габарита, ДХО с возможностью имитации эффекта ксенона (резкой вспышки и плавного разгорания) и других светодиодных сборок, где необходимо настроить ток с точностью 5 мА от 0 до 700 мА, необходимо использовать драйвер под номером “4.Программируемые светодиодные драйверы ШИМ 

 

ЕЩЕ РАЗ НАПОМИНАЕМ, ЧТО С РЕЗИСТОРНЫМИ СБОРКАМИ ИМПУЛЬСНЫЕ СТАБИЛИЗАТОРЫ (ШИМ) ИСПОЛЬЗОВАТЬ КАТЕГОРИЧЕСКИ ЗАПРЕЩЕНО! 

Как выбрать стабилизатор? 

Подойдем к критериям выбора для нашей светодиодной сборки.  
Вам нужен линейный стабилизатор если: 

1. Вы используете светодиодную сборку с резисторами. 
2. Вам необходим ток менее 150 мА, но максимальное его значение не должно быть выше 350 мА. 
3. Вам нужен режим стоп-габарит, но вы не хотите покупать программируемый стабилизатор. 
4. Используете сборку с реверсивными светодиодами 

Вам нужен импульсный стабилизатор, если: 

1. Вы хотите подключить светодиодную сборку без резисторов на ток свыше 300 мА, до одного ампера включительно. 
2. Если вы хотите чтобы ваша сборка включалась автоматически при запуске двигателя. 
3. Если вы хотите настроить токи на безрезисторной светодиодной сборке с точностью до 5 мА. 

Подбор номинала стабилизации. 

Для того чтобы правильно подобрать по току необходимый вам драйвер, необходимо измерить потребляемый ток сборки светодиодов и взять драйвер с таким же током стабилизации или ниже примерно на 30-50 мА. НО, НИ В КОЕМ СЛУЧАЕ, НЕ ВЫШЕ, СБОРКА ВЫЙДЕТ ИЗ СТРОЯ! 

НИЖЕПЕРЕЧИСЛЕНОЕ ПОДХОДИТ ТОЛЬКО ДЛЯ СБОРОК LED STUDIO.  

Для того чтобы измерить потребляемый ток светодиодной сборки, вам необходимо проверить, находятся ли резисторы в составе светодиодной сборки. Если сборка резисторная, то необходимо подключить ее к источнику напряжения, 14 В и последовательно подключить мультиметр в режиме амперметра и зафиксировать полученный ток. Отнять от полученного значения 50 и полученный результат будет являться необходимым для выбора драйвера током стабилизации. 
Для сборок в составе которых нет резисторов, необходимо определить тип и количество светодиодов. Если светодиоды такие же как, светодиоды по ссылке, 3528 то это светодиод 3528. Если же светодиод похож на светодиод по ссылке 5450 то это светодиод 5450. 
Необходимо определить количество светодиодов и тип их подключения. Если на сборке нет никаких надписей вида, “1:4”, “1:2”, то по умолчанию идет подключение “1:3”. 
Разобравшись с типом подключения, необходимо разделить количество светодиодов на вторую цифру в обозначении типа подключения (4, 2, 3). Затем для светодиодов 3528 полученное значение умножить на 10. Это будет искомый ток стабилизации. 
Для светодиодов 5450, нужно проделать все, то же самое, только умножить на 30. 
Для светодиодных сборок, купленных в Китае, необходима своя методика. Их необходимо подключить к источнику напряжения 12 В последовательно с амперметром и от полученного значения отнять 100 мА, это и будет искомый ток. Подключать китайские сборки только к линейным стабилизаторам! 

Какие частые ошибки допускают люди при выборе стабилизаторов тока? 

1. Подключают резисторные сборки к импульсным стабилизаторам, что приводит к выходу из строя как стабилизатора, так и сборки 
2. Понимание тока в названии стабилизатора, как максимально-возможного тока, который стабилизатор выдает, а не тока стабилизации и подключение, например, сборки, потребляющей 200 мА, к стабилизатору, выдающему 500 мА, что приводит к выходу из строя сборки. Ток в названии будет на выходе стабилизатора всегда.  
3. Использование импульсных стабилизаторов, ток которых во много раз меньше, чем необходим сборке. Из-за этого ключевой элемент стабилизатора находится постоянно в открытом состоянии и стабилизатор может выйти из строя. 

Что такое лед драйвер для светодиодов. Что такое драйвер для светодиодов и как подобрать нужный

Светодиоды продолжают форсировать очередные рубежи в мире искусственного освещения, подтверждая своё превосходство целым рядом преимуществ. Большая заслуга в успешном развитии LED-технологий принадлежит источникам питания. Работая в тандеме, драйвер и светодиод открывают новые горизонты, гарантируя потребителю стабильную яркость и заявленный срок службы.

Что собой представляет светодиодный драйвер, и какая функциональная нагрузка на него возложена? На что обратить внимание при выборе и есть ли альтернатива? Попробуем разобраться.

Что такое драйвер для светодиода и для чего он нужен?

Выражаясь по-научному, LED-драйвером называют электронное устройство, основным выходным параметром которого является стабилизированный ток. Именно ток, а не напряжение. Устройство со стабилизацией напряжения принято именовать «блоком питания» с указанием номинального выходного напряжения. Его используют для запитки светодиодных лент, модулей и LED-линеек. Но речь пойдет не о нём.

Главный электрический параметр драйвера для светодиода – выходной ток, который он может длительно обеспечивать при подключении соответствующей нагрузки. В роли нагрузки выступают отдельные светодиоды или сборки на их основе. Для стабильного свечения необходимо, чтобы через кристалл светодиода протекал ток, указанный в паспортных данных. В свою очередь, напряжение на нём упадёт ровно столько, сколько потребуется p-n переходу при данном значении тока. Точные значения протекающего тока и прямого падения напряжения можно определить из вольта-мперной характеристики (ВАХ) полупроводникового прибора. Питание драйвер получает, как правило, от постоянной сети 12 В или переменной сети 220 В. Его выходное напряжение указывается в виде двух крайних значений, между которыми гарантируется стабильная работа. Как правило, рабочий диапазон может быть от трёх вольт до нескольких десятков вольт. Например, драйвер с U вых =9-12 В, I вых =350 мА, как правило, предназначен для последовательного подключения трёх белых светодиодов мощностью 1 Вт. На каждом элементе упадёт примерно 3,3 В, что в сумме составит 9,9 В, а значит это попадает в указанный диапазон.

К стабилизатору с разбросом напряжений на выходе 9-21 В и током 780 мА можно подключить от трех до шести светодиодов по 3 Вт каждый. Такой драйвер считается более универсальным, но имеет меньший КПД при включении с минимальной нагрузкой.

Немаловажным параметром светодиодного драйвера является мощность, которую он может отдать в нагрузку. Не стоит пытаться выжать из него максимум. Особенно это касается радиолюбителей, которые мастерят последовательно-параллельные цепочки из светодиодов с выравнивающими резисторами, а потом этой самодельной матрицей перегружают выходной транзистор стабилизатора.

Электронная часть драйвера для светодиода зависит от многих факторов:

  • входных и выходных параметров;
  • класса защиты;
  • применяемой элементной базы;
  • производителя.

Современные драйверы для светодиодов изготавливают по принципу ШИМ-преобразования и с помощью специализированных микросхем. Широтно-импульсные преобразователи состоят из импульсного трансформатора и схемы стабилизации тока. Они питаются от сети 220 В, имеют высокий КПД и защиту от короткого замыкания и перегрузки.

Драйверы на базе одной микросхемы более компактны, так как рассчитаны на питание от низковольтного источника постоянного тока. Они также обладают высоким КПД, но их надёжность ниже из-за упрощенной электронной схемы. Такие устройства очень востребованы при светодиодном тюнинге автомобиля. В качестве примера можно назвать ИМС PT4115, о готовом схемотехническом решении на основе этой микросхемы можно прочесть в .

Критерии выбора

Сразу хочется отметить, что резистор – это не альтернатива драйверу для светодиода. Он никогда не защитит от импульсных помех и перепадов в питающей сети. Любое изменение входного напряжения пройдёт через резистор и приведет к скачкообразному изменению тока из-за нелинейности ВАХ светодиода. Драйвер, собранный на базе линейного стабилизатора – тоже не лучший вариант. Низкая эффективность сильно ограничивает его возможности.

Выбирать LED-драйвер нужно только после того, как будет точно известно количество и мощность подключаемых светодиодов.

Помните! Чипы одного типоразмера могут иметь различную мощность потребления ввиду большого количества подделок. Поэтому старайтесь приобретать светодиоды только в проверенных магазинах.

Касаемо технических параметров, то на корпусе LED-драйвера обязательно должно быть указано:

  • мощность;
  • рабочий диапазон входного напряжения;
  • рабочий диапазон выходного напряжения;
  • номинальный стабилизированный ток;
  • степень защиты от влаги и пыли.

Очень привлекательны бескорпусные драйверы с питанием от 12 В и 220 В. Среди них существуют разные модификации, в которых можно подключать как один, так и несколько мощных светодиодов. Такие устройства удобны для проведения лабораторных исследований и экспериментов. Для домашнего использования всё равно придётся поместить изделие в корпус. В итоге денежная экономия на плате драйвера открытого типа достигается в ущерб надежности и эстетики.

Кроме подбора драйвера для светодиода по электрическим параметрам, потенциальный покупатель должен четко представлять условия его будущей эксплуатации (место размещения, температура, влажность). Ведь оттого, где и как будет установлен драйвер, зависит надёжность всей системы.

Читайте так же

Мощные светодиоды 1 Вт и выше сейчас совсем недорогие. Я уверен, что многие из вас используют такие светодиоды в своих проектах.

Однако питание таких светодиодов по-прежнему не такое простое и требует специальных драйверов. Готовые драйвера удобны, но они не регулируемые, или зачастую их возможности излишни. Даже возможности моего собственного универсального светодиодного драйвера могут быть лишними. Некоторые проекты требуют самого простого драйвера, возможности которого хватит.

Poorman»s Buck – простой светодиодный драйвер постоянного тока.

Этот светодиодный драйвер построен без микроконтроллера или специализированной микросхемы. Все используемые детали легкодоступные.

Хотя драйвер задумывался как самый простой, я добавил функцию регулировки тока. Ток может подстраиваться регулятором, установленным на плате или ШИМ сигналом. Это делает драйвер идеальным для использования с Arduino или другими управляющими устройствами — вы можете управлять мощными светодиодами микроконтроллером, просто отправляя ШИМ сигнал. С Arduino вы можете просто подавать сигнал с «AnalogWrite ()» для управления яркостью мощных светодиодов.

Особенности драйвера

Работа по схеме buck-конвертера (импульсного понижающего (step-down) преобразователя)
Широкий диапазон выходных напряжения от 5 до 24В. Питание от батарей и адаптеров переменного тока.
Настраиваемый выходной ток до 1А.
Метод контроля тока «цикл за циклом»
До 18Вт выходной мощности (при напряжении питания 24В и шестью 3 Вт светодиодами)
Контроль тока при помощи потенциометра.
Контроль тока может быть использован как встроенный диммер.
Защита от короткого замыкания на выходе.
Возможность управления ШИМ сигналом.
Маленькие размеры — всего 1х1,5х0,5 дюйма(без учета ручки потенциометра).

Схема светодиодного драйвера

Схема построена на очень распространенном интегральном двойном компараторе LM393, включённым по схеме понижающего преобразователя.

Индикатор выходного тока сделан на R10 и R11. В результате напряжение пропорционально току в соответствии с законом Ома. Это напряжение сравнивается с опорным напряжением на компараторе. Когда Q3 открывается, ток течёт через L1, светодиоды и резисторы R10 и R11. Индуктор не позволяют току повышаться резко, поэтому ток возрастает постепенно. Когда напряжение на резисторе повышается, напряжение на инвертирующем входе компаратора также увеличивается. Когда оно становится выше опорного напряжения, Q3 закрывается и ток через него перестаёт течь.

Поскольку индуктор «заряжен», в схеме остаётся ток. Он течет через диод Шоттки D3 и питает светодиоды. Постепенно этот ток затухает и цикл начинается снова. Этот метод контроля тока называется «цикл за циклом». Также этот метод имеет защиту от короткого замыкания на выходе.
Весь этот цикл происходит очень быстро — более чем 500 000 раз в секунду. Частота этих циклов изменяется в зависимости от напряжения питания, прямого падения напряжения на светодиоде и тока.

Опорное напряжение создается обычным диодом. Прямое падение напряжения на диоде составляет около 0,7В и после диода напряжение остаётся постоянным. Затем это напряжение регулируется потенциометром VR1 для контроля выходного тока. При помощи потенциометра выходной ток можно изменять в диапазоне около 11:01 или от 100% до 9%. Это очень удобно. Иногда после установки светодиодов они оказываются намного ярче, чем ожидалось. Вы можете просто уменьшить ток для получения необходимой вам яркости. Вы можете заменить потенциометр двумя обычными резисторами, если вы хотите установить яркость светодиодов один раз.

Преимущество такого регулятора в том, что он контролирует выходной ток без «сжигания» избыточной энергии. Энергии от источника питания берётся только столько, сколько нужно, чтобы получить необходимый выходной ток. Немного энергии теряется из-за сопротивления и других факторов, но эти потери минимальны. Такой конвертер имеет эффективность 90% и выше.
Этот драйвер при работе мало греется и не требует теплоотвода.

Настройка выходного тока

Драйвер может быть настроен на выходной ток от 350 мА до 1А. Изменяя значение R2 и подключая сопротивление R11, вы можете изменить выходной ток.

Потенциометр изменяет выходной ток от 9 до 100% от заданного тока. Если вы настроили драйвер на 1А на выходе, то минимальный возможный выходной ток будет 90мА. Это можно использовать для регулировки яркости светодиода.

ШИМ вход

Для основной работы схемы достаточно одного компаратора. Но в LM393 есть два компаратора. Чтобы второй компаратор не пропадал, я добавил управление ШИМ сигналом. Второй компаратор работает как логический, так что на входе ШИМ не должен быть никуда подключен или на нём должен быть высокий логический уровень. Обычно этот вывод можно оставить не подключённым и драйвер будет работать без ШИМ. Но если вам нужен дополнительный контроль, вы можете подключить Arduino или микроконтроллер и управлять светодиодами при помощи его. При помощи одного Arduino можно контролировать до 6 драйверов.

ШИМ работает в пределах текущего уровня, установленного потенциометром. Т.е. если вы поставите минимальный ток и ШИМ на 10%, то ток будет ещё ниже.

Источник ШИМ сигнала не ограничивается микроконтроллером. Можно использовать все, что производит напряжение от 0 до 5В. Можете использовать фоторезисторы, таймеры, логические микросхемы. Максимальная частота ШИМ составляет около 2 кГц, но я думаю, что максимальная частота 1 кГц будет оптимальной.

ШИМ вход также может быть использован в качестве входа для пульта дистанционного управления включения / выключения. Но схема будет работать, когда выключатель разомкнут и выключена, когда замкнут.

Сборка схемы очень проста. Все использованные детали стандартные.

Аналоги

Индуктивность L1 может быть от 47 до 100 мкГн, с током как минимум 1.2А. C1 может быть от 1 до 10 мкФ. С4 может быть до 22 мкФ, на минимум 35В постоянного тока.
Q1 и Q2 можно заменить на практически любые транзисторы общего назначения. Q3 может быть заменен другим P-канальным MOSFET –транзистором с током утечки более 2А, напряжением сток-исток не менее 30 В, и входным порогом ниже 4В.

Сборка
Припаяйте детали начиная с самых маленьких, в данном случае это IC1. Все резисторы и диоды установлены вертикально. Будьте внимательны с полярностью и цоколёвкой диодов и транзисторов.

Я разработал одностороннюю печатную плату, которую можно изготовить дома. Gerber файлы можно скачать ниже.

Подключение светодиодов

Напряжение питания должно быть не менее 2В, в соответствии с документацией к светодиодам. Напряжение питания белых светодиодов около 3.5В.

При максимальном напряжении питания к этому драйверу можно подключить до 6 светодиодов, соединенных последовательно. Лучше подключать светодиоды так, чтобы все они получали одинаковый ток. Ниже показано количество светодиодов и требуемое им напряжение питания.

Вы можете использовать последовательно-параллельное подключение светодиодов для подключения большего количества светодиодов по мере необходимости. Если у вас есть только источник питания 12В, но вы хотите подключить 6 светодиодов, сделать две строки из 3 светодиодов включенных последовательно и подключите их параллельно, как показано на схеме.

Я уверен, что есть множество применений для небольшого драйвера – фары, настольные лампы, фонари т.д. Питать схему можно напряжением от 5 до 24В, от этого будет зависеть количество подключаемых светодиодов. Для питания лучше использовать батарейки.

Список радиоэлементов
Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Компаратор

LM393

1 В блокнот
Q1 Биполярный транзистор

2N5551

1 2222, 3904 и др. В блокнот
Q2 Биполярный транзистор

2N5401

1 2907, 3906 и др. В блокнот
Q3 MOSFET-транзистор

NTD2955

1 IRFU9024 В блокнот
D1, D2 Выпрямительный диод

1N4148

2 В блокнот
D3 Диод Шоттки

SB140

1 В блокнот
L1 Катушка индуктивности 47-100 мкГн/1.2A 1 В блокнот
C1 Конденсатор 2. 2 мкФ 1 В блокнот
C2, C3 Конденсатор 0.1 мкФ 2 В блокнот
C4 Электролитический конденсатор 100мкФ 35В 1 В блокнот
C5 Конденсатор 22 пФ 1 Опционально В блокнот
R1, R4, R7 Резистор

4.7 кОм

3
Сегодня в продаже можно увидеть множество различных типов источников питания для светодиодов. Данная статья призвана облегчить выбор нужного вам источника.

Прежде всего, рассмотрим различие стандарного блока питания и драйвера для светодиодов . Для начала нужно определиться — что такое блок питания? В общем случае это — источник питания любого типа, представляющий собой отдельный функциональный блок. Обычно он имеет определенные входные и выходные параметры, причем неважно — для питания каких именно устройств предназначен. Драйвер для питания светодиодов обеспечивает стабильный ток на выходе. Другими словами — это тоже блок питания. Драйвер — это лишь маркетинговое обозначение — дабы избежать путаницы. До появления светодиодов источники тока — а им и является драйвер, не имели широкого распространения. Но вот появился сверхяркий светодиод — и разработка источников тока пошла семимильными шагами. А чтобы не путаться — их называют драйверами. Итак, давайте договоримся о некоторых терминах. Блок питания — это источник напряжения (constant voltage), Драйвер — источник тока (constant current). Нагрузка — то, что мы подключаем к блоку питания или драйверу.

Блок питания

Большинство электроприборов и компонентов электроники требуют для своей работы источник напряжения. Им является обычная электрическая сеть, которая присутствует в любой квартире в виде розетки. Всем известно словосочетание «220 вольт». Как видите — ни слова о токе. Это означает, что если прибор рассчитан на работу от сети 220 В, то вам неважно — сколько тока он потребляет. Лишь бы было 220 — а ток он возьмет сам — столько, сколько ему нужно. К примеру, обычный электрический чайник мощностью 2 кВт (2 000 Вт), включенный в сеть 220 в, потребляет следующий ток: 2 000 / 220 = 9 ампер. Довольно много, учитывая, что большинство обычных электрических удлинителей рассчитано на 10 ампер. В этом причина частого срабатывания защиты (автомата) при включении чайников в розетку через удлинитель, в который и так вставлено много приборов — компьютер, например. И хорошо, если защита сработает, в противном случае удлинитель может просто расплавиться. И так — любой прибор, рассчитанный на включение в розетку — зная, какова его мощность, можно вычислить потребляемый ток.
Но большинство бытовых устройств, таких как телевизор, DVD-проигрыватель, компьютер, нуждаются в понижении сетевого напряжения с 220 В до нужного им уровня — например, 12 вольт. Блок питания — это как раз то устройство, которое занимается таким понижением.
Понизить напряжение сети можно разными способами. Самые распостраненные блоки питания — трансформаторный и импульсный.

Блок питания на основе трансформатора

В основе такого блока питания лежит большая, железная, гудящая штуковина.:) Ну, нынешние трансформаторы гудят поменьше. Основное достоинство — простота и относительная безопасность таких блоков. Они содержат минимум деталей, но при этом обладают неплохими характеристиками. Основной минус — КПД и габариты. Чем больше мощность блока питания — тем он тяжелее. Часть энергии расходуется на «гудение» и нагрев:) Кроме того, в самом трансформаторе теряется часть энергии. Другими словами — просто, надежно, но имеет большой вес и много потребляет — КПД на уровне 50-70%. Имеет важный неотъемлемый плюс — гальваническую развязку от сети. Это означает, что если произойдет неисправность или вы случайно залезете рукой во вторичную цепь питания — током вас не стукнет:) Еще один несомненный плюс — блок питания может быть включен в сеть без нагрузки — это ему не повредит.
Но давайте посмотрим, что будет, если перегрузить такой блок питания .
Имеется: трансформаторный блок питания с выходным напряжением 12 вольт и мощностью 10 ватт. Подключим к нему лампочку 12 вольт 5 ватт. Лампочка будет светиться на все свои 5 ватт и потреблять тока 5 / 12 = 0,42 А.



Подключим вторую лампочку последовательно к первой, вот так:



Обе лампочки будут светиться, но очень тускло. При последовательном соединении ток в цепи останется тем же — 0,42 А, а вот напряжение распределится между двумя лампочками, то есть каждая получит по 6 вольт. Понятно, что светиться они будут еле-еле. Да и потреблять при этом будут каждая примерно по 2,5 Вт.
Теперь изменим условия — подключим лампочки параллельно:



В итоге напряжение на каждой лампе будет одинаковое — 12 вольт, а вот тока они возьмут каждая по 0,42 А. То есть ток в цепи возрастет в два раза. Учитывая, что блок у нас мощностью 10 Вт — мало ему уже не покажется — при параллельном включении мощность нагрузки, то есть лампочек, суммируется. Если мы еще и третью подключим — то блок питания начнет дико греться и в конце концов сгорит, возможно, прихватив с собой вашу квартиру. А все это потому, что он не умеет ограничивать ток. Поэтому очень важно правильно рассчитать нагрузку на блок питания. Конечно, блоки посложнее содержат защиту от перегрузки и автоматически отключаются. Но рассчитывать на это не стоит — защита, бывает, тоже не срабатывает.

Импульсный блок питания

Самый простой и яркий представитель — китайский блок питания для галогеновых ламп 12 В. Содержит небольшое количество деталей, легкий, маленький. Размеры 150 Вт блока — 100х50х50 мм, вес грамм 100. Такой же трансформаторный блок питания весил бы килограмма три, а то и больше. В блоке питания для галогенных ламп тоже есть трансформатор, но он маленький, потому что работает на повышенной частоте. Надо отметить, что КПД такого блока тоже не на высоте — порядка 70-80%, при этом он выдает приличные помехи в электрическую сеть. Есть еще множество блоков, основанных на аналогичном принципе — для ноутбуков, принтеров и т. п. Итак, основное достоинство — небольшие габариты и малый вес. Гальваническая развязка также присутствует. Недостаток — тот же, что и у его трансформаторного собрата. Может сгореть от перегрузки:) Так что если вы решили сделать у себя дома освещение на 12 В галогенных лампах — подсчитайте допустимую нагрузку на каждый трансформатор.
Желательно создавать от 20 до 30% запаса. То есть если у вас трансформатор на 150 Вт — лучше не вешайте на него больше, чем 100 Вт нагрузки. И внимательно следите за равшанами, если они делают у вас ремонт. Расчет мощности им доверять не стоит. Также стоит отметить, что импульсные блоки не любят включения без нагрузки . Именно поэтому не рекомендуется оставлять зарядные устройства для сотовых в розетке по окончании зарядки. Впрочем, это все делают, поэтому большинство нынешних импульсных блоков содержат защиту от включения без нагрузки.

Эти два простых представителя семейства блоков питания выполняют общую задачу — обеспечение нужного уровня напряжения для питания устройств, которые к ним подключены. Как уже было сказано выше — устройства сами решают — сколько тока им нужно.

Драйвер

В общем случае драйвер — это источник тока для светодиодов . Для него обычно не бывает параметра «выходное напряжение». Только выходной ток и мощность. Впрочем, вы уже знаете, как можно определить допустимое выходное напряжение — делим мощность в ваттах на ток в амперах.
На практике это означает следующее. Допустим, параметры драйвера следующие: ток — 300 миллиампер, мощность — 3 ватта. Делим 3 на 0,3 — получаем 10 вольт. Это максимальное выходное напряжение, которое может обеспечить драйвер. Предположим, что у нас есть три светодиода, каждый из них рассчитан на 300 мА, а напряжение на диоде при этом должно быть около 3 вольт. Если мы подключим один диод к нашему драйверу, то напряжение на его выходе будет 3 вольта, а ток 300 мА. Подключим второй диод последовательно (см. пример с лампами выше) с первым — на выходе будет 6 вольт 300 мА, подключим третий — 9 вольт 300 мА. Если же мы подключим светодиоды параллельно — то эти 300 мА распределятся между ними примерно поровну, то есть примерно по 100 мА. Если мы подключим к драйверу на 300 мА трехваттные светодиоды с рабочим током 700 мА — они будут получать только 300 мА.
Надеюсь, принцип понятен. Исправный драйвер ни при каких условиях не выдаст больше тока, чем он рассчитан — как бы вы не подключали диоды. Надо отметить, что есть драйвера, которые рассчитаны на любое количество светодиодов, лишь бы их общая мощность не превышала мощность драйвера, а есть те, которые рассчитаны на определенное количество — 6 диодов, например. Некоторый разброс в меньшую сторону они, впрочем, допускают — можно подключить пять диодов или даже четыре. КПД универсальных драйверов хуже чем у их собратьев, рассчитанных на фиксированное количество диодов в силу некоторых особенностей работы импульсных схем. Также драйвера с фиксированным количеством диодов обычно содержат защиту от нештатных ситуаций. Если драйвер рассчитан на 5 диодов, а вы подключили три — вполне возможно, что защита сработает и диоды либо не включатся либо будут мигать, сигнализируя об аварийном режиме. Надо отметить, что большинство драйверов плохо переносят подключение к питающему напряжению без нагрузки — этим они сильно отличаются от обычного источника напряжения.

Итак, разницу между блоком питания и драйвером мы определили. Теперь рассмотрим основные типы драйверов для светодиодов, начиная с самых простых.

Резистор

Это простейший драйвер для светодиода. Выглядит как бочонок с двумя выводами. Резистором можно ограничить ток в цепи, подобрав нужное сопротивление. Как это сделать — подробно описано в статье «Подключение светодиодов в авто»
Недостаток — низкий КПД, отсутствие гальванической развязки. Способов надежно запитать светодиод от сети 220 В через резистор не существует, хотя во многих бытовых выключателях подобная схема используется.

Конденсаторная схема.

Сходна со схемой на резисторе. Недостатки те же. Возможно изготовить конденсаторную схему достаточной надежности, но при этом стоимость и сложность схемы сильно возрастут.

Микросхема LM317

Это следующий представитель семейства простейших драйверов для светодиодов . Подробности — в вышеупомянутой статье о светодиодах в авто. Недостаток — низкий КПД, требуется первичный источник питания. Преимущество — надежность, простота схемы.

Драйвер на микросхеме типа HV9910

Данный тип драйверов получил изрядную популярность благодаря простоте схемы, дешевизне комплектующих и небольших габаритах.
Преимущество — универсальность, доступность. Недостаток — требует квалификации и осторожности при сборке. Отсутствует гальваническая развязка с сетью 220 В. Высокие импульсные помехи в сеть. Низкий коэффициент мощности.

Драйвер с низковольтным входом

В эту категорию входят драйверы, рассчитанные на подключение к первичному источнику напряжения — блоку питания или аккумулятору. Например, это драйверы для светодиодных фонарей или ламп, предназначенных для замены галогенных 12 В. Преимущество — небольшие габариты и вес, высокий КПД, надежность, безопасность при эксплуатации. Недостаток — требуется первичный источник напряжения.

Сетевой драйвер

Полностью готовы к использованию и содержат все необходимые элементы для питания светодиодов. Преимущество — высокий КПД, надежность, наличие гальванической развязки, безопасность при эксплуатации. Недостаток — высокая стоимость, труднодоступны для приобретения. Могут быть как в корпусе, так и без корпуса. Последние обычно применяют в составе ламп или других источников света.

Применение драйверов на практике

Большинство людей, планирующих использовать светодиоды , совершают типичную ошибку. Сначала приобретаются сами СИД , затем под них подбирается драйвер . Ошибкой это можно считать потому, что в настоящее время мест, где можно приобрести в достаточном ассортименте драйвера, не так уж и много. В итоге, имея на руках вожделенные светодиоды, вы ломаете голову — как подобрать драйвер из имеющегося в наличии. Вот купили вы 10 светодиодов — а драйвера только на 9 есть. И приходится ломать голову — как быть с этим лишним светодиодом. Может быть, проще было сразу на 9 рассчитывать. Поэтому выбор драйвера должен происходить одновременно с выбором светодиодов. Далее, нужно учитывать особенности светодиодов, а именно падение напряжения на них. К примеру, красный 1 Вт светодиод имеет рабочий ток 300 мА и падение напряжения 1,8-2 В. Потребляемая им мощность составит 0,3 х 2 = 0,6 Вт. А вот синий или белый светодиод имеет при таком же токе падение напряжения 3-3,4 В, то есть мощность 1 Вт. Стало быть, драйвер с током 300 мА и мощностью 10 Вт «потянет» 10 белых или 15 красных светодиодов. Разница существенная. Типовая схема подключения 1 Вт светодиодов к драйверу с выходным током 300 мА выглядит так:

У стандартных 1 Вт светодиодов минусовой вывод больше плюсового по размеру, поэтому его легко отличить.

Как же быть, если доступны только драйвера с током 700 мА? Тогда придется использовать четное количество светодиодов , включая их по два параллельно.

Хочу заметить, что многие ошибочно предполагают, что рабочий ток 1 Вт светодиодов — 350 мА. Это не так, 350 мА — это МАКСИМАЛЬНЫЙ рабочий ток. Это означает, что при продолжительной работе необходимо использовать источник питания с током 300-330 мА. Это же верно и для параллельного включения — ток на один светодиод не должен превышать указанной цифры 300-330 мА. Вовсе не значит, что работа на повышенном токе вызовет отказ светодиода. Но при недостаточном теплоотводе каждый лишний миллиампер способен сократить срок службы. К тому же чем выше ток — тем ниже КПД светодиода, а значит, сильнее его нагрев.

Если речь пойдет о подключении светодиодной ленты или модулей, рассчитанных на 12 или 24 вольта, нужно принимать во внимание, что предлагаемые для них источники питания ограничивают напряжение, а не ток, то есть не являются драйверами в принятой терминологии. Это означает, во первых, что нужно внимательно следить за мощностью нагрузки, подключаемой к определенному блоку питания. Во-вторых, если блок недостаточно стабилен, скачок выходного напряжения может погубить вашу ленту. Слегка облегчает жизнь то, что в лентах и модулях (кластерах) установлены резисторы, позводяющие ограничить ток до определенной степени. Надо сказать, светодиодная лента потребляет относительно большой ток. Например, лента smd 5050 , количество светодиодов в которой составляет 60 штук на метр, потребляет около 1,2 А на метр. То есть для запитки 5 метров понадобится блок питания с током не менее 7-8 ампер. При этом 6 ампер потребит сама лента, а один-два ампера нужно оставить про запас, чтобы не перегружить блок. А 8 ампер — это почти 100 ватт. Такие блоки недешевы.
Драйверы более оптимальны для подключения ленты, но найти такие специфические драйвера проблематично.

Подытоживая, можно сказать, что выбору драйвера для светодиодов нужно уделять не меньше, а то и больше внимания, чем светодиодам. Небрежность при выборе чревата выходом из строя светодиодов, драйвера, чрезмерным потреблением и другими прелестями:)

Юрий Рубан, ООО «Рубикон», 2010 г .

Самым оптимальным способом подключения к 220В, 12В является использование стабилизатора тока, светодиодного драйвера. На языке предполагаемого противника пишется «led driver». Добавив к этому запросу желаемую мощность, вы легко найдёте на Aliexpress или Ebay подходящий товар.


  • 1. Особенности китайских
  • 2. Срок службы
  • 3. ЛЕД драйвер на 220В
  • 4. RGB драйвер на 220В
  • 5. Модуль для сборки
  • 6. Драйвер для светодиодных светильников
  • 7. Блок питания для led ленты
  • 8. Led драйвер своими руками
  • 9. Низковольтные
  • 10. Регулировка яркости

Особенности китайских

Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют. LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие работают на пределе своих параметров, без какого либо запаса.

Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

Срок службы

Как у любого электронного устройства у светодиодного драйвера есть срок службы, который зависит от условий эксплуатации. Фирменные современные светодиоды уже работают до 50-100 тысяч часов, поэтому питание выходит из строя раньше.

Классификация:

  1. ширпотреб до 20. 000ч.;
  2. среднее качество до 50.000ч.;
  3. до 70.000ч. источник питания на качественных японских комплектующих.

Этот показатель важен при расчёте окупаемости на долгосрочную перспективу. Для бытового пользования хватает ширпотреба. Хотя скупой платит дважды, и в светодиодных прожекторах и светильниках это отлично работает.

ЛЕД драйвер на 220В

Современные светодиодные драйвера конструктивно выполняются на ШИМ контроллере, который очень хорошо может стабилизировать ток.

Основные параметры:

  1. номинальная мощность;
  2. рабочий ток;
  3. количество подключаемых светодиодов;
  4. степень защиты от влаги и пыли
  5. коэффициент мощности;
  6. КПД стабилизатора.

Корпуса для уличного использования выполняются из металла или ударопрочного пластика. При изготовлении корпуса из алюминия он может выступать в качестве системы охлаждения для электронной начинки. Особенно это актуально при заполнении корпуса компаундом.

На маркировке часто указывают, сколько светодиодов можно подключить и какой мощности. Это значение может быть не только фиксированным, но и в виде диапазона. Например, возможно от 4 до 7 штук по 1W. Это зависит от конструкции электрической схемы светодиодного драйвера.

RGB драйвер на 220В

..

Трёхцветные светодиоды RGB отличаются от одноцветных тем, что содержат в одном корпусе кристаллы разных цветов красный, синий, зелёный. Для управления ими каждый цвет необходимо зажигать отдельно. У диодных лент для этого используется RGB контроллер и блок питания.

Если для RGB светодиода указана мощность 50W, то это общая на всё 3 цвета. Чтобы узнать примерную нагрузку на каждый канал, делим 50W на 3, получим около 17W.

Кроме мощных led driver есть и на 1W, 3W, 5W, 10W.

Пульты дистанционного управления (ДУ) бывают 2 типов. С инфракрасным управлением, как у телевизора. С управлением по радиоканалу, ДУ не надо направлять на приёмник сигнала.

Модуль для сборки

Если вас интересует лед driver для сборки своими руками светодиодного прожектора или светильника, то можно использовать led driver без корпуса.

Прежде чем делать led driver 50W своими руками, стоит немного поискать, например есть в каждой диодной лампе. Если у вас есть неисправная лампочка, у которой неисправность в диодах, то можно использовать driver из неё.

Низковольтные

Подробно разберем виды низковольтных лед драйверов работающих от напряжения до 40 вольт. Наши китайские братья по разуму предлагают множество вариантов. На базе ШИМ контроллеров производятся стабилизаторы напряжения и стабилизаторы тока. Основное отличие, у модуля с возможностью стабилизации тока на плате находится 2-3 синих регулятора, в виде переменных резисторов.

В качестве технических характеристик всего модуля указывают параметры ШИМ микросхемы, на которой он собран. Например устаревший но популярный LM2596 по спецификациям держит до 3 Ампер. Но без радиатора он выдержит только 1 Ампер.

Более современный вариант с улучшенным КПД это ШИМ контроллер XL4015 рассчитанный на 5А. С миниатюрной системой охлаждения может работать до 2,5А.

Если у вас очень мощные сверхяркие светодиоды, то вам нужен led драйвер для светодиодных светильников. Два радиатора охлаждают диод Шотки и микросхему XL4015. В такой конфигурации она способна работать до 5А с напряжением до 35В. Желательно чтобы он не работал в предельных режимах, это значительно повысить его надежность и срок эксплуатации.

Если у вас небольшой светильник или карманный прожектор, то вам подойдет миниатюрный стабилизатор напряжения, с током до 1,5А. Входное напряжение от 5 до 23В, выход до 17В.

Регулировка яркости

Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно. Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.

Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.

Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.

Мы рассмотрим действительно простой и недорогой мощный светодиодный драйвер. Схема представляет собой источник постоянного тока, что означает, что он сохраняет яркость LED постоянной независимо от того, какое питание вы используете. Ели при ограничении тока небольших сверхярких светодиодов достаточно резистора, то для мощностей свыше 1-го ватта нужна специальная схема. В общем так питать светодиод лучше, чем с помощью резистора. Предлагаемый led драйвер идеально подходит особенно для , и может быть использован для любого их числа и конфигурации, с любым типом питания. В качестве тестового проекта, мы взяли LED элемент на 1 ватт. Вы можете легко изменить элементы драйвера на использование с более мощными светодиодами, на различные типы питания — БП, аккумуляторы и др.

Технические характеристики led драйвера:

Входное напряжение: 2В до 18В
— выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе)
— ток: 20 ампер

Детали на схеме:

R2: приблизительно в 100-омный резистор

R3: подбирается резистор

Q2: маленький NPN-транзистор (2N5088BU )

Q1: большой N-канальный транзистор (FQP50N06L )

LED: Luxeon 1-ватт LXHL-MWEC


Другие элементы драйвера:

В качестве источника питания использован трансформатор-адаптер, вы можете использовать батареи. Для питания одного светодиода 4 — 6 вольт достаточно. Вот почему эта схема удобна, что вы можете использовать широкий спектр источников питания, и он всегда будет светить одинаково. Радиатор не требуется, так как идёт около 200 мА тока. Если планируется больше тока, вы должны установить LED элемент и транзистор Q1 на радиатор.

Выбор сопротивления R3

— ток LED устанавливается с помощью R3, он приблизительно равен: 0.5 / R3

Мощность рассеиваемая на резисторе приблизительно: 0.25 / R3

В данном случае установлен ток 225 мА с помощью R3 на 2,2 Ом. R3 имеет мощность 0,1 Вт, таким образом, стандартный 0,25 Вт резистор подходит отлично. Транзистор Q1 будет работать до 18 В. Если вы хотите больше, нужно изменить модель. Без радиаторов, FQP50N06L может рассеивать только около 0,5 Вт — этого достаточно для 200 мА тока при 3-х вольтовой разнице между источником питания и светодиодом.


Функции транзисторов на схеме:

Q1 используется в качестве переменного резистора.
Q2 используется в качестве токового датчика, а R3-это установочный резистор, который приводит к закрыванию Q2, когда течет повышенный ток. Транзистор создаёт обратную связь, которая непрерывно отслеживает текущие параметры тока и держит его точно в заданном значении.

Как выбрать драйвер светодиода

Добро пожаловать в это руководство по выбору драйвера светодиодов.

В этом руководстве приведены основные факторы, которые следует учитывать при выборе драйвера светодиодов для вашего приложения. Существует также информация об этих факторах, которая поможет вам принять решение. RS Components предлагает широкий ассортимент светодиодных драйверов и блоков питания от самых популярных брендов. Они также предлагают доставку на следующий день, конкурентоспособные цены и оптовые скидки.
Полную копию руководства в формате PDF можно найти внизу статьи.

Прежде чем начать…

Вы выбрали светодиод(ы)? Мы предлагаем широкий выбор светодиодной продукции, в том числе:

 

Видимые светодиоды

Это стандартные светодиоды для сквозного и поверхностного монтажа.

 

COB-светодиоды

Белые светодиоды SMD высокой яркости.Они состоят из нескольких микросхем/матриц на одной плате.

 

Светодиодные матрицы

Один или несколько светодиодов предварительно смонтированы на печатной плате.

 

Гибкие светодиоды

Гибкие светодиодные ленты различных цветов и длины.

 

Светодиодные двигатели

Подобно светодиодным матрицам, они также имеют встроенную микросхему драйвера.


Постоянный ток и постоянное напряжение

Все драйверы работают либо с постоянным током (CC), либо с постоянным напряжением (CV), либо с обоими. Это один из первых факторов, которые необходимо учитывать в процессе принятия решений. Это решение будет определяться светодиодом или модулем, который вы будете запитывать, информацию о котором можно найти в техническом описании светодиода.

ЧТО ТАКОЕ ПОСТОЯННЫЙ ТОК?

Драйверы светодиодов с постоянным током (CC) поддерживают постоянный электрический ток во всей электронной схеме за счет переменного напряжения. Драйверы CC часто являются наиболее популярным выбором для светодиодных приложений. Драйверы светодиодов CC можно использовать для отдельных лампочек или последовательно соединенных цепочек светодиодов. Последовательность означает, что все светодиоды установлены вместе в линию, чтобы ток протекал через каждый из них.Недостатком является то, что если цепь разорвана, ни один из ваших светодиодов не будет работать. Однако они, как правило, обеспечивают лучший контроль и более эффективную систему, чем постоянное напряжение.

ЧТО ТАКОЕ ПОСТОЯННОЕ НАПРЯЖЕНИЕ?

Драйверы светодиодов с постоянным напряжением (CV) являются источниками питания. У них есть заданное напряжение, которое они подают на электронную схему. Вы можете использовать драйверы светодиодов CV для параллельной работы нескольких светодиодов, например, светодиодных лент. Источники питания CV можно использовать со светодиодными лентами, у которых есть токоограничивающий резистор, который есть у большинства.Выходное напряжение должно соответствовать требованиям к напряжению всей цепочки светодиодов.

Драйверы

CV также могут использоваться для двигателей светодиодного освещения, которые имеют встроенную микросхему драйвера.

ЧТО ТАКОЕ ПОСТОЯННЫЙ ТОК / ПОСТОЯННОЕ НАПРЯЖЕНИЕ?

Некоторые драйверы светодиодов могут иметь обе опции CV и CC. Стандартно они работают в режиме CV, но когда выходной ток превышает предел номинального тока, они переключаются в режим CC. Эта функция подходит для приложений, требующих гибкого драйвера светодиодов.

КОГДА Я ИСПОЛЬЗУЮ CV ИЛИ CC?

ПОСТОЯННЫЙ ТОК

ПОСТОЯННОЕ НАПРЯЖЕНИЕ

Светодиодные светильники

светодиода параллельно

Офисное освещение

Светодиодные ленты

Жилое светодиодное освещение

Светодиодные двигатели

Подсветка настроения

Движущиеся знаки

Торговое освещение

Сценическое освещение

Развлекательное освещение

Архитектурное освещение

Светодиодные вывески

Уличное освещение

 

Хай Бэй

 

Наружное освещение


Факторы, которые следует учитывать


Выходной ток (мА)

При использовании драйвера светодиодов постоянного тока соблюдайте требования к току для выбранных вами светодиодов. Затем драйвер CC должен отразить это значение на выходе. В технических характеристиках светодиодов указано, что им требуется, со значением, указанным в амперах (А) или миллиамперах (мА). 1 А = 1000 мА

Существуют также регулируемые и выбираемые драйверы выходного тока. Они дают либо диапазон, например от 0 мА до 500 мА, либо ступенчатые значения, такие как 350 мА, 500 мА, 700 мА. Ваш светодиод должен соответствовать выбранным значениям.

Светодиоды

могут работать при более низком токе, чтобы продлить срок их службы. Использование более высокого тока может привести к износу светодиода намного быстрее.

Выходная мощность (Вт)

Это значение указано в ваттах (Вт). Используйте светодиодный драйвер, по крайней мере, с тем же значением, что и ваши светодиоды.

Драйвер должен иметь более высокую выходную мощность, чем требуется вашим светодиодам для дополнительной безопасности. Если выходная мощность эквивалентна требованиям к мощности светодиода, он работает на полную мощность. Работа на полной мощности может привести к сокращению срока службы драйвера. Точно так же потребляемая мощность светодиодов указана как среднее значение. С добавлением допусков для нескольких светодиодов вам потребуется более высокая выходная мощность драйвера, чтобы покрыть это.

Выходное напряжение (В)

Это значение указано в вольтах (В). Для драйверов постоянного напряжения требуется такая же мощность, как и требования к напряжению вашего светодиода. Для нескольких светодиодов требования к напряжению каждого светодиода складываются для получения общего значения.

Если вы используете постоянный ток, выходное напряжение должно превышать требования светодиода.

Ожидаемая продолжительность жизни

Драйверы будут поставляться с ожидаемым сроком службы в тысячах часов, известным как MTBF (среднее время до отказа).Вы можете сравнить уровень, на котором вы его используете, чтобы определить рекомендуемый срок службы. Работа драйвера светодиодов с рекомендованными выходными параметрами помогает продлить срок его службы, сократить время и затраты на техническое обслуживание.

Рейтинг IP

Насколько водо- и пыленепроницаемым должен быть ваш светодиодный драйвер? Если ваш драйвер собирается куда-то, где он может вступить в контакт с водой/пылью, вы можете использовать драйвер со степенью защиты IP65. Это означает, что он защищен от пыли и попадания воды.

Если вам нужно что-то водонепроницаемое, вам может понадобиться драйвер со степенью защиты IP67 или IP68.Рейтинг IP указывается в виде числа. Первая цифра обозначает твердые объекты, а вторая – жидкости. Вот определения:

Упаковка/капсула

Вам нужен светодиодный драйвер внутри корпуса? Или он будет встроен в систему? Драйверы светодиодов с открытой рамой более компактны и могут быть адаптированы для вашего приложения. Инкапсуляция обеспечивает рейтинг IP и защиту для автономных драйверов светодиодов.


Способ завершения

Как подключить светодиодный драйвер к выбранному приложению? Некоторые светодиодные драйверы поставляются с прикрепленными проводами. В качестве альтернативы вам может потребоваться приобрести провода отдельно. Также существуют отверстия для винтов или отверстий для быстрого крепления кабелей к драйверу.

Копия моего Руководства по покупке светодиодных драйверов прикреплена внизу страницы..

5 факторов, которые следует учитывать при выборе драйвера светодиодов

Большинство людей не знают, насколько важны драйверы светодиодов для обеспечения адаптивности и разнообразия, к которым мы привыкли в современных передовых автомобильных системах освещения.В быстро развивающемся сегменте автомобильного освещения светодиодные драйверы предлагают еще более комплексные возможности, позволяя OEM-производителям транспортных средств улучшить энергосбережение, преимущества безопасности видимости, атмосферу автомобиля и эффект «вау» для потребителей, недоступный в автомобилях всего несколько лет назад.

Основной функцией драйвера светодиодов является регулирование выходной мощности. Драйверы светодиодов обеспечивают постоянную светоотдачу, что означает стабильное питание светодиодов, несмотря на возможные колебания мощности. Однако существует ошибочное представление о том, что технология драйверов светодиодов является универсальным решением.Реальность такова, что «универсального» светодиодного драйвера не существует. Каждое приложение уникально и требует уникального дизайна драйвера. Помните, что конструкция и качество светодиодного драйвера оказывают существенное влияние на производительность отдельной светодиодной цепочки.

Драйверы светодиодов позволяют выбирать различные варианты питания для достижения оптимальной эффективности. Разработчики имеют возможность выбирать различные варианты конфигурации, а также обеспечивать возможность настройки таких элементов, как плавный пуск или функции аварийного освещения.

При выборе драйвера светодиодов важно учитывать следующие пять факторов, чтобы определить, какой из них лучше всего подходит для вашего приложения:

1)      Суммарная мощность светодиодов на функцию : это ключ к определению топологии драйвера светодиодов.

2)      Температура окружающей среды электроники: Например, при заднем освещении, где требуются более яркие светодиоды, линейный драйвер не лучший вариант из-за его высокой рассеиваемой мощности; вместо этого драйвер переключения является лучшим выбором, поскольку он более эффективен и, следовательно, работает с меньшим нагревом при более высоких уровнях мощности.

3)      Гибкость изменения конфигурации светодиодов : возможности регулировки света с использованием нескольких методов яркости, таких как управление опорным напряжением и ШИМ-управление. Широкий диапазон рабочего питания позволяет настроить источник питания и количество светодиодов для управления.

4)      Поддерживаемые функции : такие как автоматическое затемнение, индивидуальное управление светодиодами, изменение цвета.

5)      Поддерживаемая диагностика и соответствие требованиям безопасности: , такие как предупреждение о перегреве, отключение при перегреве, обрыв цепи, короткое замыкание, защита от перегрузки по току, отказы одного светодиода, пониженное и повышенное напряжение на усилителе, контроль температуры светодиодов.

Краткое руководство по драйверам светодиодов

Для светодиодного освещения требуется постоянный постоянный электрический ток с точным напряжением. Это также позволяет светодиодам поддерживать постоянную температуру; если светодиод слишком сильно нагревается, он может начать работать со сбоями и работать плохо. Драйверы светодиодов помогают светодиодам достигать оптимальных условий.

Мы поговорили с Томасом Кентом, менеджером по надежности Eaton, о том, как работают светодиодные драйверы.

Что такое драйвер светодиодов?

TK:  Драйверы светодиодов аналогичны балластам для люминесцентных ламп или трансформаторам для низковольтных ламп: они обеспечивают светодиоды электричеством, необходимым для их функционирования и оптимальной работы.

Для светодиодов

требуются драйверы для двух целей:

  • Светодиоды предназначены для работы от низковольтного (12-24В) электричества постоянного тока. Однако в большинстве мест подается более высокое напряжение (120-277 В), электричество переменного тока. Драйвер светодиода преобразует более высокое напряжение переменного тока в низковольтный постоянный ток.
  • Драйверы светодиодов
  • также защищают светодиоды от колебаний напряжения или тока. Любое изменение напряжения может вызвать изменение тока, подаваемого на светодиоды.

Световой поток светодиода пропорционален потребляемому току, а светодиоды рассчитаны на работу в определенном диапазоне тока. Следовательно, слишком большой или слишком маленький ток может привести к изменению или более быстрому ухудшению светоотдачи из-за более высоких температур внутри светодиода или теплового разгона.

В каких приложениях используются светодиодные драйверы?

TK: Светодиоды, для которых обычно требуется внешний драйвер, включают в себя арочные светильники, потолочные светильники и ленточные светильники, а также некоторые светильники, панели и наружные светильники.Эти лампы часто используются для коммерческого, наружного или дорожного освещения.

Светодиоды

, предназначенные для домашнего использования, содержат внутренние драйверы, а не отдельные внешние драйверы. Бытовые лампы обычно включают внутренний драйвер, потому что это упрощает замену старых ламп накаливания или КЛЛ.

Какие существуют типы драйверов светодиодов?

TK:  Существует два основных типа внешних драйверов светодиодов: постоянный ток и постоянное напряжение. Каждый тип драйвера предназначен для работы со светодиодами с различным набором электрических требований:

  • Драйверы постоянного тока  питание светодиодов, для которых требуется фиксированный выходной ток и диапазон выходных напряжений.Будет указан только один выходной ток, указанный в амперах или миллиамперах, а также диапазон напряжений, которые будут варьироваться в зависимости от нагрузки (мощности) светодиода.
  • Драйверы постоянного напряжения питают светодиоды, которым требуется фиксированное выходное напряжение с максимальным выходным током. В этих светодиодах ток уже регулируется либо простыми резисторами, либо внутренним драйвером постоянного тока внутри светодиодного модуля.

На что следует обратить внимание при выборе драйвера светодиодов?

TK:  После того как вы определили, нужен ли вам драйвер постоянного тока или постоянного напряжения, необходимо учитывать ряд других факторов:

  • Выходной ток  — Проверьте требования к току используемых вами светодиодных ламп.Если вы используете драйвер постоянного тока, он должен будет отражать этот вывод.
  • Выходная мощность — Выходная мощность указана в ваттах. Как минимум, ваш светодиодный драйвер должен иметь ту же выходную мощность, что и ваши светодиоды.
  • Выходное напряжение  — Если вы используете драйвер постоянного напряжения, его выходное напряжение должно соответствовать требованиям к напряжению светодиода. Если вы используете несколько светодиодов, сложите требования к напряжению, чтобы определить выходное напряжение, необходимое вашему драйверу. Если вы используете драйвер постоянного тока, убедитесь, что выходное напряжение превышает требования ваших светодиодных ламп.

Какую роль играет затемнение?

TK:  В зависимости от своих спецификаций некоторые драйверы светодиодов могут также обеспечивать затемнение и/или последовательность цветов для светодиодов, к которым они подключены. Светодиоды и драйверы как постоянного тока, так и постоянного напряжения могут быть изготовлены с возможностью диммирования. Внешним драйверам с регулируемой яркостью часто требуется внешний диммер или другие устройства управления диммированием, указанные в техническом описании продукта (а именно, TRIAC, диммеры с задней кромкой или диммеры 1–10 В), чтобы они работали должным образом.Затемнение работает с элементами управления зданием и датчиками присутствия, чтобы создать более эффективную и действенную среду.

Оценка и выбор драйвера светодиодов могут быть простыми при наличии правильного ноу-хау. Понимание отношения тока к напряжению и диммирования может помочь определить важные функции, необходимые для оптимизации производительности любой системы освещения.

Как выбрать ИС драйвера светодиодов?

Светодиод прочно занял свое место в подсветке портативных устройств.Даже в подсветке для ЖК-панели большого размера она начала бросать вызов общепринятой CCFL. В освещении светодиоды особенно популярны на рынке благодаря своим ярким характеристикам, таким как энергоэффективность, экологичность, длительный срок службы и низкие эксплуатационные расходы. Схема драйвера является важной и неотъемлемой частью светодиода. Будь то освещение, подсветка или панель дисплея, выбор технической архитектуры схемы драйвера должен соответствовать конкретным приложениям.

Механизм светодиодного освещения работает следующим образом: когда прямое напряжение прикладывается к обоим концам, неосновной и основной носители в полупроводнике рекомбинируют, высвобождая избыточную энергию, испуская фотоны. Основными функциями схемы управления светодиодами являются преобразование переменного напряжения в постоянный источник питания и согласование напряжения и тока в соответствии с требованиями светодиодных устройств. Помимо требований безопасности, схема драйвера светодиодов должна также включать две другие основные функции:

Во-первых, постоянный ток должен поддерживаться как можно дольше, поэтому изменение выходного тока может поддерживаться в диапазоне ±10%, особенно когда изменение источника питания выходит за пределы диапазона ±15%.Вот причины для использования драйвера постоянного тока при использовании светодиода в качестве монитора, других осветительных устройств или подсветки:

1. Чтобы предотвратить превышение максимальной скорости тока привода и дальнейшее влияние на его надежность.

2. Чтобы удовлетворить ожидаемые требования к яркости и обеспечить однородность цвета и яркости каждого светодиода.

Во-вторых, схема драйвера должна поддерживать низкое энергопотребление, чтобы эффективность светодиодной системы оставалась на высоком уровне.

ШИМ (модификация ширины импульса) — это традиционная технология регулировки света, которая использует простые цифровые импульсы для периодического включения и выключения светодиодного драйвера. Системе нужно только подавать широкие и узкие цифровые импульсы, чтобы легко изменить выходной сигнал для регулировки яркости светодиода. Преимущество заключается в том, что технология способна обеспечить высококачественный белый свет с высокой эффективностью благодаря простоте применения. Но есть фатальный минус: он подвержен ЭМИ (электромагнитным помехам), иногда даже издает слышимые шумы.

Повышение напряжения является важной задачей схемы драйвера светодиода, разделенной на два различных топологических режима, а именно повышение напряжения через индуктор и скачок заряда. Поскольку светодиод управляется током, а индуктор наиболее эффективен в момент передачи тока, то наибольшая сила повышения напряжения с помощью индуктора заключается в высоком КПД, который может достигать 90% при правильном проектировании. Однако столь же примечательна его слабость, т. е. сильные электромагнитные помехи, что предъявляет высокие требования к системам телекоммуникационных продуктов, таких как мобильные телефоны. С появлением зарядовых насосов большинство мобильных телефонов не повышают напряжение через индуктор. Конечно, эффективность повышения напряжения с помощью зарядового насоса ниже, чем другим способом.

Независимо от того, применяется ли освещение или фоновая подсветка, разработчик продукта сталкивается с проблемой повышения эффективности передачи драйвера. Повышение эффективности передачи не только полезно для портативных устройств, так как увеличивает время работы в режиме ожидания, но также является важным средством решения проблемы рассеивания тепла светодиодами.В освещении использование светодиодов высокой мощности также подчеркивает проблему повышения эффективности передачи.

Для работы светодиода необходимы компоненты, стабилизирующие ток и напряжение, которые должны иметь высокое разделенное напряжение и низкое энергопотребление, в противном случае высокоэффективный светодиод снизит общую эффективность системы из-за высокого рабочего потребления, что противоречит принципу энергосбережения и высокого эффективность. Следовательно, основная схема ограничения тока должна использовать высокоэффективные схемы, такие как емкостная, индукторная или коммутационная схема с источником питания, поскольку это позволяет обеспечить высокий КПД светодиодной системы вместо резистора или схемы последовательной стабилизации напряжения.Последовательная схема постоянной выходной мощности может поддерживать постоянную светоотдачу светодиода в широком диапазоне источников питания, но обычные схемы ИС теряют некоторую эффективность. Принятие схемы переключения с источником питания может гарантировать постоянную выходную мощность с высокой эффективностью передачи при резких изменениях напряжения источника питания.

В настоящее время светодиоды с их светоотдачей далеки от замены трехдиапазонных люминесцентных ламп, однако светодиодные светильники могут эффективно работать при безопасном сверхнизком напряжении (БСНН), например, подводные светильники в плавательных или детских бассейнах, шахтные лампы.Кроме того, светодиоды имеют уникальные преимущества в прямом использовании зеленой энергии, такой как солнечная энергия, энергия ветра или аварийное освещение. В частности, при регулировке света светодиоды могут не только выполнять регулировку от нуля до ста процентов, но и поддерживать высокую эффективность в течение всего процесса регулировки без ущерба для долговечности, что является сложной задачей для газоразрядных ламп.

Какой драйвер светодиода мне нужен?

Как правильно выбрать драйвер для вашей светодиодной установки

Когда дело доходит до правильного выбора Совместимость светодиодных драйверов имеет решающее значение.Использование неправильного драйвера в светодиодной системе может привести к отказу и даже повреждению используемых компонентов. Будучи отраслевыми экспертами и одним из крупнейших поставщиков в Великобритании, наша дружная техническая команда Ultra LEDs готова проконсультировать вас по всем вопросам, связанным со светодиодами, и помочь вам найти продукт, который подходит именно вам. Вот наше руководство по драйверам, вопросы, которые вам нужно задать при их покупке, и наши главные советы по их правильной установке.

Что такое драйвер?

Драйверы светодиодов — это устройства, которые регулируют и обеспечивают мощность, используемую для «привода» светодиодных лент.Подобно традиционным трансформаторам, они преобразуют переменный ток сетевого напряжения (240 В переменного тока) в более низкое напряжение. Однако драйверы светодиодов также преобразуют ток сетевого напряжения в постоянный постоянный ток (DC), необходимый для светодиодов. Регулируя свою мощность в соответствии с электрическими свойствами светодиодной ленты, которые меняются при нагревании, драйверы регулируют мощность, подаваемую на светодиоды, чтобы она была постоянной, обычно 12 В или 24 В постоянного тока.

Поскольку для светодиодов требуется постоянное напряжение 12 В или 24 В, драйверы светодиодов требуются во всех светодиодных системах (за исключением тех, которые специально разработаны для управления источниками питания от сети, такими как лента сетевого напряжения или светодиодные лампы). Но для светодиодов Ultra купить подходящий драйвер легко – достаточно ответить на эти 5 простых вопросов:

1. Какое напряжение?

Для питания всех светодиодных лент требуется напряжение 12 В или 24 В, что указано в их спецификации. Обязательно купите драйвер с тем же выходным напряжением, которое требуется для ленты. Запуск ленты 12 В с драйвером 24 В приведет к тому, что светодиоды будут ярче в краткосрочной перспективе, но более высокое напряжение в конечном итоге сожжет ленту. Запуск ленты 24 В с драйвером 12 В приведет к тому, что светодиоды вообще не загорятся.

2. Какая мощность?

Количество энергии, потребляемой светодиодной лентой, зависит от ее длины. Мощность ленты — это количество энергии, потребляемой лентой. за метр . Чтобы определить, сколько ватт требуется вашей ленте, просто умножьте мощность ленты на количество метров, которые вы используете. Как только вы узнаете мощность ленты, вы можете выбрать подходящий драйвер.

Мощность драйвера указывает на его максимальную выходную мощность.Мы рекомендуем выбирать драйвер с мощностью как минимум на 10 % выше, чем мощность, необходимая для светодиодной ленты, чтобы обеспечить более длительный срок службы.

Например, 5 м светодиодной ленты мощностью 6 Вт требуют 30 Вт. Мы рекомендуем использовать драйвер с выходной мощностью 33 Вт или более для питания этой ленты.

3. Должен ли драйвер быть водонепроницаемым?

Если вы устанавливаете светодиодную ленту на открытом воздухе, на кухне или в ванной комнате, важно использовать водостойкий драйвер.Чтобы узнать, является ли драйвер водостойким, посмотрите на его защиту от проникновения или рейтинг «IP». Брызгозащищенные драйверы имеют рейтинг IP 65 и лучше всего подходят для использования в ванных комнатах и ​​на кухнях. Водонепроницаемые драйверы имеют класс защиты IP 67 или выше и лучше всего подходят для использования вне помещений.

4. Вы хотите иметь возможность регулировать яркость светодиодов?

Если вы хотите иметь возможность затемнять светодиоды, обязательно купите драйвер с возможностью затемнения. Они работают за счет уменьшения количества энергии, подаваемой на светодиод, и бывают двух разных типов: драйверы с регулируемой яркостью заднего фронта (также известные как драйверы ELV) и драйверы переднего фронта. диммируемые драйверы (также известные как драйверы TRIAC).Чтобы узнать больше о различиях между двумя различными технологиями диммирования, нажмите здесь.

5. Plug and Play или Professional?

Если вы устанавливаете светодиодное освещение самостоятельно, мы рекомендуем наш стандартный набор светодиодных драйверов; они оснащены инновационной технологией plug and play с предварительно подключенным кабелем и сетевой вилкой для Великобритании, что делает установку проще, чем когда-либо.

Для тех, кто имеет опыт работы с электрикой, кому требуется доступ к портам драйвера, или вы ищете драйвер для более требовательной ситуации, например, в розничной или коммерческой среде, мы рекомендуем нашу линейку драйверов Tagra® Professional. Благодаря их исключительной надежности, высококачественным внутренним компонентам и беспрецедентной 5-летней гарантии можно не беспокоиться о выходе из строя. Они также имеют несколько клемм для более универсальной установки, требующей жесткой проводки.

Для получения дополнительной информации о драйверах свяжитесь с членом нашей технической команды по адресу [email protected] или позвоните в наш офис по телефону 01625 611 611.

.

Катушки индуктивности и драйверы светодиодов: что вам нужно знать

Хотя для светодиодов можно использовать и другие типы преобразователей, импульсные преобразователи хорошо подходят для автомобильных приложений в дополнение ко многим другим.Наиболее распространенные примеры:

Понижающий преобразователь : Этот простой тип понижающего преобразователя очень распространен и снижает выходное постоянное напряжение до значения ниже входного напряжения и обычно требует один индуктор.

Повышающий преобразователь : Эти схемы повышают входное постоянное напряжение до более высокого уровня на выходе при одновременном снижении тока. В качестве накопительного элемента используется один индуктор. Повышающий преобразователь является одним из наиболее распространенных типов, используемых в светодиодном освещении.

Понижающе-повышающий преобразователь : Эта схема объединяет два вышеперечисленных типа для обеспечения выходного напряжения выше или ниже входного напряжения с инвертированным выходным напряжением. Для этого типа также требуются катушки индуктивности.

SEPIC: Несимметричный первичный преобразователь индуктивности (SEPIC) представляет собой повышающий преобразователь, за которым следует повышающе-понижающий преобразователь. Тем не менее, это позволяет выходному напряжению быть таким же, как и ниже или выше, чем входное напряжение, в то время как выходная полярность обоих остается одинаковой.Для этих цепей обычно требуются две одинаковые катушки индуктивности, при этом двухобмоточный тип предпочтительнее из-за их меньшей занимаемой площади, меньшей индуктивности рассеяния и способности повышать общую эффективность схемы.

Обратноходовой преобразователь : Этот тип преобразователя обеспечивает изоляцию, накопление энергии и масштабирование напряжения, а также может обеспечивать более одного выходного напряжения с различной полярностью с помощью обмотки с ответвлениями. Электрически он функционирует как две катушки индуктивности с общим сердечником, но обмотками противоположной полярности.

Прямой преобразователь : Этот тип использует трансформатор для увеличения или уменьшения выходного напряжения, обеспечивая изоляцию нагрузки, и может одновременно обеспечивать несколько напряжений с разной полярностью. Он не использует индуктор для накопления энергии и схематически очень похож на обратноходовой преобразователь, но более эффективен.

Выбор топологии

Импульсные преобразователи постоянного тока, используемые в драйверах светодиодов, требуют накопления энергии во время их работы, и, поскольку индуктор по своей природе выполняет эту функцию, он является критически важным компонентом. Например, преобразователи должны работать в как можно более широком диапазоне напряжений. Это усложняется тем фактом, что когда батарея заряжена или во время ее зарядки, напряжение на ячейке больше, чем выходное напряжение.

Это означает, что напряжение на ячейке будет меньше желаемого выходного напряжения в конце цикла разряда, что фактически исключает возможность использования понижающего или повышающего преобразователя. Более желательным выбором является топология SEPIC, поскольку она позволяет повышать или понижать напряжение.В этом помогают характеристики накопления связанных катушек индуктивности, поэтому этот подход становится очень популярным как в автомобильном, так и в обычном светодиодном освещении.

Логично предположить, что пассивный компонент, такой как катушка индуктивности, должно быть легко указать в любом приложении. Однако верно как раз обратное, особенно для драйверов светодиодов, поскольку их вклад в общую производительность значителен.

Определение наиболее подходящей катушки индуктивности для драйвера светодиодов, очевидно, может быть выполнено с помощью обычного и трудоемкого процесса. Однако инструмент выбора индуктора преобразователя постоянного тока Coilcraft, который можно найти на веб-сайте компании, позволяет выбрать правильные индукторы, просто добавляя различные значения. Более подробная информация об этом инструменте доступна в примечаниях к применению компании «Выбор катушек индуктивности для управления светодиодами», в которых показано, как его можно использовать.

Что такое светодиодные драйверы и как их выбрать, Новости недвижимости, ET RealEstate

НЬЮ-ДЕЛИ: Если вы внимательно следите за светодиодной технологией, то, возможно, вы слышали о термине — светодиодные драйверы.Это одна из важнейших и запутанных частей светодиодного освещения, потому что на рынке доступно множество драйверов, из которых можно выбирать.

Итак, если вы не разбираетесь в светодиодных драйверах и не знаете, какой из них лучше всего подходит для ваших светодиодных ламп, мы создали полное руководство для вашего удобства.

Драйверы для светодиодов

Это очень важный продукт для предотвращения повреждения ваших светодиодов, поскольку прямое напряжение мощного светодиода изменяется в зависимости от уровня температуры. Прямое напряжение — это количество вольт, которое требуется светодиоду для проведения электричества и свечения. С повышением температуры прямое напряжение уменьшается, что приводит к тому, что светодиоды потребляют больше тока. Этот процесс будет продолжаться до тех пор, пока светодиод не разрядится и не лопнет от истощения. Этот процесс называется термическим разгоном. Драйверы светодиодов

служат для источника питания с электрическими характеристиками, аналогичными светодиодам. Этот драйвер предотвратит ситуацию теплового разгона, поскольку он будет обеспечивать дополнительную мощность для светодиодов во время ситуации с прямым напряжением при смене сезона.

Как выбрать идеальный светодиодный драйвер?

Теперь, если вы ищете лучшие светодиодные драйверы для своих светодиодных фонарей, вы можете следовать этим динамическим советам.

Типы драйверов светодиодов

Прежде всего, вы должны понимать, что существует два типа драйверов светодиодов: входная мощность постоянного тока низкого напряжения в диапазоне 5–36 В постоянного тока и входная мощность переменного тока высокого напряжения в диапазоне 9 0–277 В переменного тока. .

Драйверы переменного тока высокого напряжения называются автономными драйверами.Но в большинстве случаев специалисты рекомендуют низковольтные драйверы постоянного тока. Они очень полезны для небольших гаджетов с большим количеством вариантов затемнения и регулировки. Однако, если у вас дома работают большие коммерческие устройства, вам придется использовать драйверы переменного тока.

Характеристики тока драйвера

Во-вторых, рекомендуется проверить характеристики тока драйвера в контексте светодиода, для которого вы хотите использовать драйвер. Более высокий драйвер будет производить больше света и потреблять больше мощности.Очень важно иметь правильную информацию о токе вашего светодиодного драйвера и радиаторе, чтобы ваши светодиодные фонари не пострадали от избыточного или пониженного тока питания.

Вам также необходимо уточнить свои требования к драйверам, например, если вам нужен драйвер для диммирования, вам нужно выбрать драйвер с функциями затемнения.

Разное, на что следует обратить внимание

  • Какой тип светодиодов используется у вас с точным количеством?
  • Спросите у продавцов рекомендации по току прямого напряжения.
  • Выберите между текущим драйвером светодиодов или драйвером светодиодов постоянного напряжения.
  • Вы должны учитывать между текущим и постоянным.
  • Какой тип питания используется драйвером?
  • Учитывайте также ограниченность пространства.
  • Уточните характеристики приложения, для которого вы получаете драйвер.
  • Думал о производительности, эффективности и цене драйверов.
  • Проанализируйте все функции драйверов светодиодов, такие как диммирование, пульсация, микропроцессорное управление и другие.
После того, как вы рассмотрели все основные функции, вы можете легко выбрать лучшие драйверы для светодиодов и защитить все ваши светодиодные устройства от повреждения в результате воздействия перенапряжения.

Author:

Добавить комментарий

Ваш адрес email не будет опубликован.